Case-Based Reasoning(CBR) offers a new approach for developing knowledge based systems. CBR has several research issues which can be divided into two categories : (1) static issues and (2) dynamic issues. The static issues are related to case representation scheme and case data model, that is, focus on casebase which is a repository of cases. The dynamic issues, on the other hand, are related to case retrieval procedure and problem solving process, i.e. case adaptation phase. This research is forcused on retrieval procedure Traditional query processing accepts precisely specified queries and only provides exact answers, thus requiring users to fully understand the problem domain and the casebase schema, but returning limited or even null information if the exact answer is not available. To remedy such a restriction, extending the classical notion of query answering to approximate query answering(AQA) has been explored. AQA can be achieved by neighborhood query answering or associative query answering. In this paper, neighborhood query answering technique is used for AQA. To reinforce the CBR process, a new retrieval procedure(cooperative CBR) using neighborhood query answering is proposed. An neighborhood query answering relaxes a query scope to enlarge the search range, or relaxes an answer scope to include additional information. Computer Aided Process Planning(CAPP) is selected as cooperative CBR application domain for test. CAPP is an essential key for achieving CIM. It is the bridge between CAD and CAM and translates the design information into manufacturing instructions. As a result of the test, it is approved that the problem solving ability of cooperative CBR is improved by relaxation technique.
Proceedings of the Korean Institute of Building Construction Conference
/
2005.05a
/
pp.119-124
/
2005
It is necessary for prediction of recycled aggregate concrete(RAC) strength at the early stage that facilitate concrete form removal and scheduling for construction. However, to predict RAC strength is difficult because of being influenced by complicated many factors. Therefore, this research suggest optimized estimation method that can reflect many factors. One way is Case-Based Reasoning(CBR) that solved new problems by adapting solutions to similar problems solved in the past, which are solved in the case library. Other way is Artificial Neural Networks(ANN) that solved new problems by training using a set of data, which is representative of problem domain. This study is to propose comparing accuracy of the estimating the compressive strength of recycled aggregate concrete using Case-Based Reasoning(CBR) and Artificial Neural Networks(ANN).
AI(Artificial Intelligence) refers to the area of computer engineering and IT technology that focuses on the methodology and creation of intelligent agents. The Othello game is often produced with AI, since it is played with relatively simple rules on a board and on a limited space of 8 rows and 8 columns. Previous algorithms take longer time than desirable and often fail to face new circumstances, as they search for all the possible cases and rules. In order to solve this crucial weakness, we propose that a CBR algorithm be applied to Orthello. Case-Based Reasoning(CBR), is the process of solving new problems based on the solutions of the past similar problems. We can apply this process to Othello and expedite the process of computer reasoning for a solution to new cases based on the data from accumulated past cases. Then, these new solutions are dynamically added to the set of past cases so that it becomes harder for players(users) to be able to read the pattern. The proposed system in which a CBR algorithm is applied to the Othello game makes the computation process faster and the game harder to play.
A CBR(Case-Based Reasoning) system solves the new problems by adapting the solutions that were used to solve the old problems. Past cases are retained in the case base, each in a specific form that is determined by features. Features are selected for the purpose of representing the case in the best way. Similar cases are retrieved by comparing the feature values and calculating the similarity scores. Therefore, the performance of CBR depends on the selected feature subsets. In this research, we measured the Selection Effect and the Elimination Effect of each feature. The Selection Effect is measured by performing the CBR with only one feature, and the Elimination Effect is measured by performing the CBR without only one feature. Based on these measurements, the feature subsets are selected. The resulting CBR showed better performance in terms of accuracy and efficiency than the CBR with all features.
In this study, we propose a integrated model of logistic regression, artificial neural networks, support vector machines(SVM), with case-based reasoning(CBR). To predict respondents in the direct marketing is the binary classification problem as like bankruptcy prediction, IDS, churn management and so on. To solve the binary problems, we employed logistic regression, artificial neural networks, SVM. and CBR. CBR is a problem-solving technique and shows significant promise for improving the effectiveness of complex and unstructured decision making, and we can obtain excellent results through CBR in this study. Experimental results show that the classification accuracy of integration model using CBR is superior to logistic regression, artificial neural networks and SVM. When we apply the customer response model to predict respondents in the direct marketing, we have to consider from the view point of profit/cost about the misclassification.
The Transactions of the Korea Information Processing Society
/
v.5
no.1
/
pp.103-110
/
1998
In case of traditional Rule-Based Reasoning(RBR) and Case-Based Reasoning(CBR), although knowledge is reasoned either by one of them or by the integration of RBR and CBR, there is a problem that much time should be consumed by numerous rules and cases. In order to improve this time-consuming problem, in this paper, a new type of reasoning technique, which is a kind of integration of reduced RB and CB, is to be introduced. Such a new type of reasoning uses Rough Set, by which we can represent multi-meaning and/or random knowledge easily. In Rough Set, solution is to be obtained by its own complementary rules, using the process of RB and CB into equivalence class by the classification and approximation of Rough Set. and then using reduced RB and CB through the integrated reasoning.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.75-77
/
1998
Perhaps one of the most versatile approaches to learning in practical domains lies in case based reasoning. To date, however, most case based reasoning systems have tended to focus on relatively simple domains. The current study involves the development of a decision support system for a complex production process with a limited database. This paper presents a set of critical issues underlying CBR, then explores their consequences for a complex domain. Finally, the performance of the system is examined for resolving various types of quality control problems.
As the effective use of information has gained greater attention over the decade, various conventional AI techniques have been applied to develop expert systems for business applications. Case-based reasoning (CBR) makes data more accessible by organizing it as a set of examples from past experience that can be generalized and applied to current problems. This paper illustrates basic concepts of CBR and addresses the system discussed in this paper can provide a basis for building more flexible and adaptable expert systems for business applications.
Journal of the Korea Society of Computer and Information
/
v.12
no.6
/
pp.287-295
/
2007
This paper proposes a novel data editing techniques with genetic algorithm (GA) in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in compelax problem solving. Nonetheless, compared to other machine teaming techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However. designing a good matching and retrieval mechanism for CBR system is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for data editing in CBR.
Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.