• Title/Summary/Keyword: CAViaR method

Search Result 3, Processing Time 0.017 seconds

Forecasting value-at-risk by encompassing CAViaR models via information criteria

  • Lee, Sangyeol;Noh, Jungsik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1531-1541
    • /
    • 2013
  • This paper proposes a new method of VaR forecasting using the conditional autoregressive VaR (CAViaR) models and information criteria. Instead of using a single CAViaR model, we propose to utilize several candidate CAViaR models during a forecasting period. By adopting the Akaike and Bayesian information criteria for quantile regression, we can update not only parameter estimates but also the CAViaR specifications. We also propose extended CAViaR models with a constant location parameter. An empirical study is provided to examine the performance of the proposed method. The results suggest that our method shows more stable performance than those using a single specification.

Comparison of semiparametric methods to estimate VaR and ES (조건부 Value-at-Risk와 Expected Shortfall 추정을 위한 준모수적 방법들의 비교 연구)

  • Kim, Minjo;Lee, Sangyeol
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.171-180
    • /
    • 2016
  • Basel committee suggests using Value-at-Risk (VaR) and expected shortfall (ES) as a measurement for market risk. Various estimation methods of VaR and ES have been studied in the literature. This paper compares semi-parametric methods, such as conditional autoregressive value at risk (CAViaR) and conditional autoregressive expectile (CARE) methods, and a Gaussian quasi-maximum likelihood estimator (QMLE)-based method through back-testing methods. We use unconditional coverage (UC) and conditional coverage (CC) tests for VaR, and a bootstrap test for ES to check the adequacy. A real data analysis is conducted for S&P 500 index and Hyundai Motor Co. stock price index data sets.

Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.589-596
    • /
    • 2011
  • The conditional autoregressive value at risk (CAViaR) model is useful for risk management, which does not require the assumption that the conditional distribution does not vary over time but the volatility does. But it does not provide volatility forecasts, which are needed for several important applications such as option pricing and portfolio management. For a variety of probability distributions, it is known that there is a constant relationship between the standard deviation and the distance between symmetric quantiles in the tails of the distribution. This inspires us to use a support vector quantile regression (SVQR) for volatility forecasts with the distance between CAViaR forecasts of symmetric quantiles. Simulated example and real example are provided to indicate the usefulness of proposed forecasting method for volatility.