• Title/Summary/Keyword: CATION

Search Result 2,611, Processing Time 0.027 seconds

Response of Yield and Nitrogen Use Efficiency for Garlic on Different Types and Rates of Organic Fertilizer (유기질 비료의 종류 및 시비량이 마늘의 수량과 질소이용효율에 미치는 영향)

  • Kim, Seong Heon;Hwang, Hyun Young;Seo, Hye Bin;Rim, Jae Eun;Park, Seong Jin;Lee, Yun Hae;Kim, Myung Sook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.35-42
    • /
    • 2019
  • Organic fertilization (OF) was an effective management strategy to improve crop yield and soil fertility. Determination of optimum application rate has been received great interest as a major research field. In this study, we evaluated optimum application level of three different organic fertilizers; mixed expeller compost (MEC), mixed organic fertilizer (MOF) and organic complex fertilizer (OCF), for garlic cultivation. Treatments consisted of MEC, MOF, OCF (50, 100, 150% of standard nitrogen input), inorganic fertilizer(NPK, N-P2O5-K2O : 250-78-128 kg ha-1) and no-fertilization (control). Overall, the yields of garlic under MEC, MOF and OCF 100% (5,337, 5,617 and 5,276 kg ha-1) were higher than under control (4,496 kg ha-1). The 100% of three OFs treatements showed the highest yield and bulb diameter, similar with NPK, while leaf length and bulb height were not significantly different among all treatments. The 150% of three OFs rather decreased yield. The highest nitrogen use efficiency (38.4 and 38.0%) was observed in MOF 100% and OCF100%, which was the most similar with that in NPK (38.8%). As OF application rate increased, pH was decreased, but soil NO3-N and NH4-N were increased. There was no significant difference in soil organic matter (OM), av. P2O5 and Ex. cation values. From these results, 100% application of OFs could be recommended as a suitable input level for garlic cultivation, regardless of organic fertilizer types. Further study might be required to evaluate long-term OF application effect on soil health and crop productivity.

Variations of pH and Electrical Conductivity at Different Depths of Forest Soil after an Application of Artificial Acid Rain (인공산성(人工酸性)비 살포(撒布)에 의한 산림토양(山林土壤)의 토심별(土深別) 산도(酸度) 및 전기전도도(電氣傳導度)의 변화(變化))

  • Lee, Heon-Ho;Kim, Jae-Gi
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • This study was carried out to analyze the characteristics of pH and electrical conductivity(EC) at each stand and soil depth by the artificial acid rain sprinkling in the upper watershed of Mt. Palgong and furthermore to clarify the relationships between forest soil and water purification function. The results obtained in the experimental sites of Quercus acutissima and Larix leptolepis were summarized as follows ; 1. The average soil pH at each soil layer(0~5cm, 0~10cm, 0~20cm in depth) were 4.8, 4.3 and 4.5 for the Quercus acutissima soil and 5.15, 5.19 and 5.21 for the Larix leptolepis soil. The soil pH of Larix leptolepis stand was higher than that of Quercus acutissima stand. In addition, the deeper soil depth was, the higher soil pH was. 2. The soil solution pH of Larix leptolepis stand was higher than that of Quercus acutissima stand. It was due to the high soil pH of Larix leptolepis stand itself and the difference of humus layer thickness. 3. It took time to show the pH buffer capacity of forest soil after application of artificial acid rain in the forest soil. The pH value of soil solution in each experimental site was maximum at this time and then did not increase pH value any more. 4. Soil solution EC increased slowly with pH 3.0 treatment, but it decreased slowly with pH 5.0 treatment over time. It was assumed that the amount of the leached cation and the ions leading buffer action changed at the stands with ranges of acidity treatment. 5. From the trend of soil solution EC at each soil depth, it seemed that the water buffer capacity of the forest soil increased as the soil depth increased.

  • PDF

The Effects of the Interaction between Precipitation and Tree Species on the Chemical Properties of Throughfall and Stemflow (강우(降雨)와 식생(植生)의 상호작용(相互作用)이 수관통과우(樹冠通過雨) 및 수간류(樹幹流)의 화학적(化學的) 성질변화(性質變化)에 미치는 영향(影響))

  • Joo, Yeong-Teuk;Jin, Hyun-O;Son, Yo-Hwan;Oh, Jong-Min;Jung, Duk-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • This research was carried out to investigate the effects of the different tree species(Q. spp., L. leptolepis and P. koraiensis) about the chemical properties of throughfall and stemflow, to purify the acid rain at Kyung Hee Univ. experimental forest, Gwangju-gun, Kyunggi-do. The water quality of the precipitation, throughfall and stemflow in each forest stands were analyzed chemically. The throughfall pH ranges were Q. spp.(pH 4.96-6.34), L. leptolepis(pH 3.96-6.41) and P. koraiensis(pH 4.11-6.36), and the stemflow pH ranged Q. spp.(pH 4.33-6.05), L. leptolepis(pH 3.59-6.09) and P. koraiensis(pH 3.60-6.13). pH values of throughfall and stemflow to the precipitation were Q. spp. higer than L. leptolepis and P. koraiensis, while distribution range was small. Therefore, buffering capacity about the precipitation in the tree species trended Q. spp. bigger than L. leptolepis and P. koraiensis. Nearly all concentration of dissolved elements were precipitation${\leq}$throughfall${\leq}$stemflow. The cation ($Ca^{2+}$, $Mg^{2+}$, $K^+$ and $NH_4{^+}$), and anion($Cl^-$ and $NO_3{^-}$) were increased. Especially the concentration of $Mg^{2+}$, $K^+$, $NH_4{^+}$ and $Cl^-$ were noticeable. In comparing concentration of dissolved elements of throughfall with each tree species, $Ca^{2+}$ concentration was Q. spp.$NH_4{^+}$ was Q. spp.

  • PDF

Sensitivity and Self-purification Function of Forest Ecosystem to Acid Precipitation (II) - Ion Balance in Vegetation and Soil Leachate - (산성우(酸性雨)에 대한 산림생태계(山林生態系)의 민감도(敏感度) 및 자정기능(自淨機能)(II) - 식생층(植生層)과 토양층(土壤層) 용탈(溶脫)이온 분석(分析)을 중심으로 -)

  • Chang, Kwan Soon;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.103-113
    • /
    • 1995
  • To estimate buffer capacity and sensitivity of forest ecosystem to acid rain in Taejon, ionic components of throughfall, stemflow, soil leachate, and open rain in Pinus rigida and Quercus variabilis forest were analysed. The spatial sensitivity based on parent rock and forest type was given by IDRISI of GIS which created imagery conversion from soil and vegetation map. Parent rocks and soils were classified into acidic, sedimentary, metamorphic rock and then subdivided based on $SiO_2$ content. Average pH of vegetation leachate was higher in throughfall but lower in stemflow than open rain and higher in Quercus variabilis forest than in Pinus rigida forest. The flow of $SO{_4}^{2-}$, $NO_3{^-}$ and $Cl^-$ through vegetation leaching(throughfall plus stemflow) into soil were 7.2, 4.3, and 2.5 times, respectively, higher in Pinus rigida forest and 4.4, 2, and 2.5 times, respectively, higher in Quercus variabilis forest than in open field. But the concentration of exchangeable cations was 4.1 times higher in Pinus rigida forest and 4.6 times higher in Quercus variabilis forest than in open field. Average pH of soil leachate was lower than that of throughfall, but higher than that of stemflow. The concentration of exchangeable canons and $Al^{3+}$ in soil leachate were more in Pinus rigida forest than in Quercus variabilis forest and increase signficantly with the increase of acidic deposits. Pinus forest had more deposition and canopy interception of acidic pollutants and more nutrient loss than Quercus forest, and Quercus forest had more cation exchange and proton consumption and than consequently had less nutrient loss and better buffer capacity than Pinus forest. The 69% of forest soils was distributed on acidic rock, 25% of it on metamorphic rock, and 6% of it on intermediate and basic rock. Acidic rock residuals which had low very canon exchange capacity and high sensitivity to acid rain occupied a half of total forest land in Taejon area. Therefore forests in Taejon showed high vulnerability to acid rain and will receive much more stress with the increase of acid rain precursors.

  • PDF

Relative Contribution rate on Soil Physico-chemical Properties Related to Fruit Quality of 'Hongro' Apple (사과 '홍로' 품종의 과실 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Park, Seo-Jun;Han, Jeom-Wha;Cho, Jung-Gun;Choi, Hyeong-Suk;Lim, Tae-Jun;Yun, Hea-Keun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2012
  • This study was carried out to investigate the optimum soil environmental conditions of ten contents on production of high quality fruit in 'Hongro' apple. The soil and fruit characteristics were analyzed at total 60 orchards in major apple producing areas such as Chungju, Moonkyeung, Yeongju, Andong, Yeosan and Yeongcheon (10 orchards an area). The soil environmental factors affected fruit weight were the highest relative contribution in saturated hydraulic conductivity of 33.3%. The cation was 24.6%, the bulk density, soil texture and solid phase were also high as relative contribution. The fruit weight was influenced by soil physical properties more than soil chemical properties. The soil environmental factors affected sugar content were highest soil texture of 21.9%, and the CEC and bulk density were low as relative contribution. The fruit coloring was the highest relative contribution in phosphate of 55.9%. While saturated hydraulic conductivity and organic matter content were low. The coloring was influenced by soil chemical properties more than soil physical properties. Fruit coloring was high influenced over 70% by soil physical properties. Finally, relative contribution on fruit quality related with sugar content, fruit weight, and coloring were high influenced by cultivation layer depth of 25.8%, soil texture 22.2%, and soil pH of 21.0% but bulk density and solid phase were low relative contribution. The fruit growth and soil chemical properties in 'Hongro' apple were very closely related. Therefore, orchard soil management to produce high quality fruit was very importance drainage management and organic matter application. We concluded that scientific soil management is possible by quanlifiable of soil management factors.

Sorption Characteristics of Cs on Weathered Biotite (흑운모 풍화에 따른 Cs 이온의 흡착 특성)

  • Kim, Ji-Yeon;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.255-263
    • /
    • 2015
  • To investigate the effect of the weathering process of biotite on Cs sorption, sorption experiment of Cs with $10^{-3}M$ solution was carried out on the biotite reacted at different reaction times at pH 2 and 4, and 1 M solutions of Na, K, Ca, Mg, Rb, and Cs. Peak changes were observed for some samples by XRD, indicating that new mineral phase formed by biotite weathering. Among several factors, cations in solutions have the most significant influence on the mineralogical changes. The samples reacted with Na showed the most outstanding change with increasing peak width and appearance of $12{\AA}$ peak and $14{\AA}$ peak. This new peaks indicate the formation of hydrobiotite and vermiculite. The new peaks had stronger peak intensity for the sample reacted at pH 4 than that at pH 2, probably due to the fast dissolution of small particles and edges and resultant decrease in the formation of expandable layers. The biotite reacted at Mg solution showed small intensity at $14{\AA}$. Based on XRD results, the degree of biotite weathering was in the order of Na, Mg, and Ca. The samples reacted with K, Rb, Cs solutions did not show noticeable mineralogical changes caused by weathering. The amount of sorbed Cs on weathered biotite showed close relationship with the degree of weathering indicated by XRD. At both pH 2 and 4, the biotite reacted with Na solution showed the highest Cs sorption, and those with Mg and Ca solutions showed the next highest ones. The sorbed amounts of Cs on the bitote reacted with K, Rb, Cs solutions were relatively low. This indicates that at the Cs concentration ($10^{-3}M$) which we used for this experiment and which was much higher than the maximum Cs concentration sorbed on the frayed edge site, expandable layer plays more important role than frayed edge. In the cases of K, Rb, and Cs solutions, Cs sorption was decreased because K is the same cations as the one in the interlayer or the sorption of Rb and Cs on the frayed edge prevents the formation of expandable layers.

Nutrient Dynamics in the Throughfall, Stemflow and Soil Solution of Korean Pine, Japanese Larch and Hardwood Stands at Kwangju-Gun, Kyonggi-Do (경기도(京畿道) 광주(廣州) 지방(地方) 잣나무림(林), 낙엽송림(落葉松林), 활엽수림(闊葉樹林)에서 수관통과우(樹冠通過雨), 수간류(樹幹流), 토양수내(土壤水內) 양료동태(養料動態))

  • Park, Yeong Dae;Lee, Don Koo;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.541-554
    • /
    • 1999
  • The objectives of this study were to examine the amount of nutrient input by throughfall and stemflow, and the nutrient dynamics by throughfall, stemflow and soil solution among Piuns koraiensis, Larix leptolepis and hardwood forests including oaks at Kwangju-Gun, Kyonggi-Do. A total amount of rainfall during the study period was 1410.1mm. Of the total rainfall, 85% was from throughfall at the L. leptolepis stand, 84.5% at the thinned P. koraiensis stand, 83.2% at the unthinned P. koraiensu stand and 81.2% at the hardwood stand, showing greater throughfall at the conifer stand than at the hardwood stand. Stemflow showed 2.7% of rainfall at the hardwood stand, 1.3% at the unthinned P. koraiensis stand, 1.2% at the thinned P. koraiensis stand and 0.8% at the L. leptolepis stand, showing greater stemflow at the hardwood stand than at the conifer stand. Ion concentration of stemflow was greater than those of rainfall and throughfall. The conifer stand showed higher ion concentration than the hardwood stand both for cation and anion. The ion concentrations of throughfall and stemflow were higher in the descending order : $NH{_4}^+$-N > $K^+$ > $K^+$ > $Na^+$ > $Mg^{2+}$ for cations and $SO{_4}^{2-}$ > $NO{_3}^-$-N > $Cl^-$-N for anions. After the precipitation passed through the canopy, $K^+$ increased most at the hardwood stand, whereas $NH{_4}^+$-N did most at the P. koraiensis and L. leptolepis stands. The ion concentration of soil solution was higher in the descending order : $Ca^{2+}$ > $Mg^{2+}$ > $Na^+$ for cations and $NO{_3}^-$-N > $Cl^-$ > $SO{_4}^{2-}$ for anions. $NH{_4}^+$-N and $K^+$ seemed to be supplied primarily from atmospheric deposition while $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ from weathering.

  • PDF

Influence of Forest Management on the Facilitation of Purifying Water Quality in Abies holophylla and Pinus koraiensis Watershed (II) (전나무림(林)과 잣나무림(林) 유역(流域)에서 산림시업(山林施業)이 산림(山林)의 수질정화기능(水質淨化機能)에 미치는 영향(影響)(II))

  • Jeong, Yongho;Park, Jae Hyeon;Kim, Kyong Ha;Youn, Ho Joong;Won, Hyoung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.498-509
    • /
    • 1999
  • This study aims to clarify the effect of forest management practices(thinning and pruning) in forest hydrological processes on electrical conductivity to get the fundamental information on the facilitation of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis in Kwangnung Experimental Forest for 6 months from March 1 to August 4, 1998. In case of deviding into forest hydrological processes, multiple regression equations of electrical conductivity and total amount of anion, $NO{_3}^-$ of throughfall, stemflow, soil water of management site in Abies holophylla shows high significance. And multiple regression equations of electrical conductivity and total amount of anion, $SO{_4}^{2-}$, $Cl^-$ of throughfall, stemflow, soil water of non-management site in Abies holophylla shows high significance. Multiple regression equations of electrical conductivity and $NO{_3}^-$, before non-rain days of throughfall, stemflow, soil water of management site in Pinus koraiensis shows high significance. And multiple regression equations of electrical conductivity and total amount of ion, $NO{_3}^-$, $K^+$, pH, total amount of anion of throughfall, stemflow, soil water of non-management site in Plinus koraiensis shows high significance. Multiple regression equations of electrical conductivity and pricipitation, total amount of ion, $Na^+$ of stream water in Abies holophylla and Pinus koraiensis shows high significance. In case of combining into forest hydrological processes, multiple regression equations of electrical conductivity and total amount of cation and anion, $Na^+$, $Cl^-$, and pH in rainfall, throughfall, stemflow, soil and stream water shows high significance.

  • PDF

Sensitivity and Self-purification Function of Forest Ecosystem to Acid Precipitation(I) - Acidification of Precipitation and Transformed Vegetation Index(TVI) - (산성우(酸性雨)에 대한 산림생태계(山林生態系)의 민감도(敏感度) 및 자정기능(自淨機能)(I) - 강우(降雨)의 산성화도(酸性化度)와 식생(植生) 활력도(活力度)(TVI)를 중심(中心)으로 -)

  • Lee, Soo Wook;Chang, Kwan Soon
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.4
    • /
    • pp.460-472
    • /
    • 1994
  • This study has been conducted to give some ideas for reasonable ecological management of Taejon city and its adjacent forest ecosystem against the effect of acid rain. Rain monitoring points to analyse its components represented 1 point in industrial area, 4 points in commercial area, 4 points in residential area, and 5 points in suburban area and forest survey was done in 7 forest sites adjacent to rain monitoring points. Transformed vegetation index(TVI) based on Landsat TM data was analysed for forest area. Taejon area was seriously contaminated by air pollutants and average concentration of anions in precipitation were 20.16mg/l for $SO_4{^{2-}}$, 3.65mg/l for $NO_3{^-}$, and 3.09mg/l for $Cl^-$. Anion in precipitation were $1.09mg/m^2/month$ for $SO_4{^{2-}}$, $0.23mg/m^2/month$ for $NO_3{^-}$, and $0.20mg/m^2/month$ for $Cl^-$. Cation in precipitation were $0.14mg/m^2/month$ for $Ca^{2+}$, $0.10mg/m^2/month$ for $NH_4{^+}$, $0.08mg/m^2/month$ for $Na^+$, $0.07mg/m^2/month$ for $K^+$, and $0.08mg/m^2/month$ for $Mg^{2+}$. The region with the highest concentration of $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$ in rain was industrial area. $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$ concentrations in industrial area were 43.08, 3.88, and 3.64ppm, respectively. Forest soil showed strongly acidic ranging pH4.16-4.94. Transformed vegetation index(TVI) were 3.11 in Dangsan, 4.00 in Kyechoksan, 4.13 in Bomunsan, 4.18 in Kabhasan, 3.34 in Bongsan, 4.13 in Sikchangsan, and 4.20 in Seongchisan. Dangsan forest located near in industrial area showed the lowest TVI.

  • PDF

The Effects of Solidified Sewage Sludge as a Soil Cover Material for Cultivation of Bioenergy Crops in Reclaimed Land (에너지작물 재배를 위한 간척지 토양의 토양복토재로써 하수슬러지 고화물의 이용효과)

  • An, Gi-Hong;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Cha, Young-Lok;Bark, Surn-Teh;Kim, Jung-Kon;Yoon, Yong-Mi;Park, Kwang-Guen;Kim, Jang-Taeck
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.238-247
    • /
    • 2012
  • To determine the possibility of solidified se wage sludge for use as a soil cover material in reclaimed land, the growth of energy crops and soil chemical properties investigated in each experimental plots during 2 years (2010 and 2011). The experimental plots consisted of the mixing with solidified sewage sludge plot (SS50), the covering with solidified sewage sludge plot (SS100), and the original reclaimed land plot (ORL) on reclaimed land for the intended landfill in Sudokwon Landfill Site Management Corporation (SLC). Plant height, measured in the second year (2011), was highest in the Geodae 1 grown at plots treated with solidified sewage sludge. The growth of energy crops cultivated in both SS50 and SS100 were better than in ORL. The contents of organic matter (OM) and total nitrogen (T-N) at both SS50 and SS100 were considerably higher than that of the ORL over 2 years. However, the soil from ORL showed higher salinity with high contents of exchangeable $Na^+$ cation than that of SS50 and SS100 over 2 years. We consider that soil chemical and physical properties on reclaimed land used in this study could be improved by the application of solidified sewage sludge due to following reasons. Firstly, the application of solidified sewage sludge may provide soil nutrients on reclaimed land i.e. the growth of energy crops better than in ORL, resulted in more OM and T-N contents in SS50 and SS100. Secondly, the top layers mixed or covered with solidified sewage sludge on reclaimed land may be prevented the salinity accumulation due to capillary rise to surface soil, and improved the cultivation layer for effectively propagating the rhizomes of energy crops. Thus the solidified sewage sludge may be a great soil cover materials for cultivation of bioenergy crops in reclaimed land.