DOI QR코드

DOI QR Code

흑운모 풍화에 따른 Cs 이온의 흡착 특성

Sorption Characteristics of Cs on Weathered Biotite

  • 김지연 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Kim, Ji-Yeon (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
  • 투고 : 2015.09.03
  • 심사 : 2015.09.25
  • 발행 : 2015.09.30

초록

흑운모의 풍화과정이 Cs의 흡착에 어떠한 영향을 미치는지 알아보기 위하여 pH 2, 4, 그리고 1 M의 Na, K, Ca, Mg, Rb, Cs의 용액에서 각각 다른 기간 동안 반응을 시킨 흑운모에 대하여 $10^{-3}M$의 Cs 농도에서 흡착 실험을 실시하였다. XRD 분석 결과 일부의 시료에서 XRD 피크 변화가 발견되어 광물의 풍화 반응이 일어났음을 보여주었다. 여러 요소들 중 수용액 내 양이온 종이 가장 크게 광물학적 변화에 영향을 미치는 것으로 나타났다. 실험에 사용한 양이온 중 Na 이온이 가장 큰 영향을 주었는데 Na의 경우 풍화 반응 후 XRD 피크의 너비 증가와 더불어 $12{\AA}$ 피크와 $14{\AA}$ 피크를 형성하였고 이는 hydrobiotite와 버미큘라이트의 형성에 기인한 것으로 판단된다. 이러한 새로운 피크는 pH 2에서 반응한 시료보다 pH 4의 시료에서 강하게 나타났다. 이는 낮은 pH에서는 작은 입자나 모서리 등이 더 빨리 용해되어 추가적인 팽윤층의 형성을 감소시킨 것으로 해석된다. Mg의 용액에서 풍화된 흑운모의 경우 약간의 $14{\AA}$ 피크가 형성됨을 확인할 수 있었고 XRD 결과를 종합하여 볼 때 Na, Mg, Ca 용액의 순서로 흑운모의 풍화가 증가되었으며 K, Rb, Cs의 경우 용액 내에서의 풍화가 크게 일어나지 않고 있음을 알 수 있었다. 풍화된 흑운모에 흡착된 Cs의 양은 XRD 상에서 보여지는 광물의 풍화 정도와 밀접한 관계가 있는 것으로 나타났으며 Na에서 pH 2와 4에서 모두 Na 용액에서 반응시킨 흑운모가 가장 큰 흡착양을 보이고 다음으로 Mg, Ca 등으로 높은 흡착양 순서를 보였다. K, Rb, Cs의 용액에서는 Cs의 흡착이 상대적으로 매우 적게 일어났으며 이는 본 연구가 수행된 Cs의 농도($10^{-3}M$)는 Cs이 강하게 흡착되는 것으로 알려진 닳은 모서리(frayed edge) 흡착자리가 포화되는 농도 이상으로 풍화로 생성되는 팽윤층이 중요한 역할을 하는 것으로 보인다. K, Rb, Cs 용액의 경우 층간이온과 동종이온이거나 닳은 모서리 등의 흡착 등으로 추가적인 팽윤층의 생성을 방해하고 닳은 모서리 흡착을 막아서 Cs의 흡착양이 적은 것으로 사료된다.

To investigate the effect of the weathering process of biotite on Cs sorption, sorption experiment of Cs with $10^{-3}M$ solution was carried out on the biotite reacted at different reaction times at pH 2 and 4, and 1 M solutions of Na, K, Ca, Mg, Rb, and Cs. Peak changes were observed for some samples by XRD, indicating that new mineral phase formed by biotite weathering. Among several factors, cations in solutions have the most significant influence on the mineralogical changes. The samples reacted with Na showed the most outstanding change with increasing peak width and appearance of $12{\AA}$ peak and $14{\AA}$ peak. This new peaks indicate the formation of hydrobiotite and vermiculite. The new peaks had stronger peak intensity for the sample reacted at pH 4 than that at pH 2, probably due to the fast dissolution of small particles and edges and resultant decrease in the formation of expandable layers. The biotite reacted at Mg solution showed small intensity at $14{\AA}$. Based on XRD results, the degree of biotite weathering was in the order of Na, Mg, and Ca. The samples reacted with K, Rb, Cs solutions did not show noticeable mineralogical changes caused by weathering. The amount of sorbed Cs on weathered biotite showed close relationship with the degree of weathering indicated by XRD. At both pH 2 and 4, the biotite reacted with Na solution showed the highest Cs sorption, and those with Mg and Ca solutions showed the next highest ones. The sorbed amounts of Cs on the bitote reacted with K, Rb, Cs solutions were relatively low. This indicates that at the Cs concentration ($10^{-3}M$) which we used for this experiment and which was much higher than the maximum Cs concentration sorbed on the frayed edge site, expandable layer plays more important role than frayed edge. In the cases of K, Rb, and Cs solutions, Cs sorption was decreased because K is the same cations as the one in the interlayer or the sorption of Rb and Cs on the frayed edge prevents the formation of expandable layers.

키워드

참고문헌

  1. Arnold, P.W. (1960) Nature and mocle of weathering of soil potassium reserves. Journal of the Science of Food and Agriculture, 11, 285-292. https://doi.org/10.1002/jsfa.2740110601
  2. Beasley, T.M. and Jennings, C.D. (1984) Inventories of $^{293}$, $^{240}Pu$, $^{241}Am$, $^{137}Cs$, and $^{60}Co$ in Columbia River sediments from Hanford to the Columbia River estuary. Environmental Science & Technology, 18, 207-212. https://doi.org/10.1021/es00121a014
  3. Blum, J.D. and Erel, Y. (1997) Rb-Sr isotope systematics of a granitic soil chronosequences: The importance of biotite weathering. Geochimica et Cosmochimica Acta, 61, 3193-3204. https://doi.org/10.1016/S0016-7037(97)00148-8
  4. Chang, S., Choung, S., Um, W., and Chon, C.M. (2013) Effects of weathering processes on radioactive cesium sorption with mineral characterization in Korean nuclear facility site. Journal of the Mineralogical Society of Korea, 26, 209-218 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2013.26.3.209
  5. Cho, Y. and Komarneni, S. (2009) Cation exchange equilibria of cesium and strontium with K-depleted biotite and muscovite. Applied Clay Science, 44, 15-20. https://doi.org/10.1016/j.clay.2008.12.015
  6. Francis C.W. and Brinkley, F.S. (1976) Preferential adsorption of $^{137}Cs$ to micaceous minerals in contaminated freshwater sediment. Nature, 260, 511-513. https://doi.org/10.1038/260511a0
  7. Hopf, J., Langenhorst, F., Pollock, K., Merten, D., and Kothe, E. (2009) Influence of microorganisms on biotite dissolution: An experimental approach. Chemie der Erde-Geochemistry, 69, S2, 45-56.
  8. Jeong, G.Y. and Kim H.B. (2003) Mineralogy, chemistry, and formation of oxidized biotite in the weathering profile of granitic rocks. American Mineralogist, 88, 352-364. https://doi.org/10.2138/am-2003-2-312
  9. Kim, H.S., Park, W.K., Lee, H.Y., Park, J.S., and Lim, W.T. (2014) Characterization of natural zeolite for removal of radioactive nuclides. Journal of the Mineralogical Society of Korea, 27, 41-51 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.1.41
  10. Kim, J.Y. and Kim, Y. (2015) Sorption of cesium on weathered biotite: The effects of cations in solution. Catena, 2015, 107-113.
  11. Kim, Y., Ch,o S., Kang, H.D., Kim, W., Lee, H.R., Doh, S.H., Kim, K., Yun, S.G., Kim, D.S., and Jeong, G.Y. (2006) Radocesium reaction with illite and organic matter in marine sediment. Marine Pollution Bulletin, 52, 659-665. https://doi.org/10.1016/j.marpolbul.2005.10.017
  12. Kim, Y., Kim, K., Kang, H.D., Kim, W., Doh, S.H., Kim, D.S., and Kim, B.K. (2007) The accumulation of radiocesium in coarse marine sediment: Effects of mineralogy and organic matter. Marine Pollution Bulletin, 54, 1341-1350. https://doi.org/10.1016/j.marpolbul.2007.06.003
  13. Maiti, T.C., Smith, M.R., and Laul, J.C. (1989) Colloid formation study of U, Th, Ra, Pb, Po, Sr, Rb, and Cs in briny (high ioinic strength) groundwaters: Analog study for waste disposal. Nuclear Technology, 84, 82-87. https://doi.org/10.13182/NT89-A34197
  14. Malmstöm, M., Banwart, S., Lewenhagen, J., Duro, L., and Bruno, J. (1996) The dissolution of biotite and chlorite at $25^{\circ}C$ in the near-neutral pH region. Journal of Contaminant Hydrology, 21, 201-213. https://doi.org/10.1016/0169-7722(95)00047-X
  15. Malmstrom, M. and Banwart, S. (1997) Biotite dissolution at $25^{\circ}C$: The pH dependence of dissolution rate and stoichiometry. Geochimica et Cosmochimica Acta, 61, 2779-2799. https://doi.org/10.1016/S0016-7037(97)00093-8
  16. McBride, M. B. (1994) Environmental chemistry of soils. Oxford University Press, p406.
  17. Murakami, T., Ito, J.-I., Utsunomiya, S., Kasama, T., Kozai, N., and Ohnuki, T. (2004) Anoxic dissolution processes of biotite: implications for Fe behavior during Archean weathring. Earth and Planetary Science Letters, 224, 117-129. https://doi.org/10.1016/j.epsl.2004.04.040
  18. Murphy, S.F., Brantley, S.L., Blum, A.E., White, A.F., and Dong, H. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering. Geochimica et Cosmochiica Acta, 62, 227-243. https://doi.org/10.1016/S0016-7037(97)00336-0
  19. Poinssot, C., Baeyens, B., and Bradbury, M.H. (1999) Experimental and modelling studies of caesium sorption on illite. Geochimica et Cosmochimica Acta, 63, 3217-3227. https://doi.org/10.1016/S0016-7037(99)00246-X
  20. Santschi, P.H., Bollhalder, S., Zingg, S., Luck, A., and Farrenkothen, K. (1990) The self cleaning capacity of surface waters after radioactive fallout. Evidence from European waters after Chernobyl, 1986-1988. Environmental Science & Technology, 24, 519-527. https://doi.org/10.1021/es00074a009
  21. Sawhney B.L. (1970) Potassium and Cesium Ion selectivity in relation to clay mineral structure. Clays and Clay Minerals, 18, 47-52. https://doi.org/10.1346/CCMN.1970.0180106
  22. Sawhney B.L. (1972) Selectivity sorption and fixation of cations by clay minerals : A Review. Clays and Clay Minerals, 20, 93-100. https://doi.org/10.1346/CCMN.1972.0200208
  23. Sokolova, T.A., Tolpeshta, I.I., and Topunova, I.V. (2010) Biotite weathering in podzolic soil under conditions of a model field experiment. Eurasian Soil Science, 43, 1150-1158. https://doi.org/10.1134/S106422931010008X
  24. Staunton, S. and Roubaud, M. (1997) Adsorption of $^{137}Cs$ on monmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid. Clays and Clay Minerals, 45, 251-260. https://doi.org/10.1346/CCMN.1997.0450213
  25. Sugimori, H., Yokoyama, T., and Murakami, T. (2009) Kinetics of biotite dissolution and Fe behavior under low $O_2$ conditions and their implications for Precambrian weathering. Geochimica et Cosmochimica Acta, 73, 3767-3781. https://doi.org/10.1016/j.gca.2009.03.034

피인용 문헌

  1. 화학 및 천연 응집제를 이용한 수중 Cs, Sr 제거 vol.38, pp.12, 2015, https://doi.org/10.4491/ksee.2016.38.12.662