• Title/Summary/Keyword: CAN Network Control

Search Result 4,031, Processing Time 0.036 seconds

Development of a Body Network System with GSEK/VDX Standards and CAN Protocol (OSEK/VDX 표준과 CAN 프로토콜을 사용한 차체 네트웍 시스템 개발)

  • 신민석;이우택;선우명호;한석영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.175-180
    • /
    • 2002
  • In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.

Design and Implementation of LonWorks/IP Router for Network-based Control (네트워크 기반 제어를 위한 Lonworks/IP 라우터의 설계 및 구현)

  • Hyun, Jin-Waok;Choi, Gi-Sang;Choi, Gi-Heung
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.409-412
    • /
    • 2007
  • Demand for the technology for access to device control network in industry and for access to building automation system via internet is on the increase. In such technology integration of a device control network with a data network such as internet and organizing wide-ranging DCS(distributed control system) is needed, and it can be realized in the framework of VDN(virtual device network). Specifications for device control network and data network are quite different because of the differences in application. So a router that translates the communication protocol between device control network and data network, and efficiently transmits information to destination is needed for implementation of the VDN(virtual device network). This paper proposes the concept of NCS(networked control system) based on VDN(virtual device network) and suggests the routing algorithm that uses embedded system.

  • PDF

CAN Based Networked Intelligent Multi-Motor Control System Using DSP2812 Microprocessor (DSP2812 마이크로프로세서를 이용한 CAN기반 지능형 복수전동기 제어시스템개발)

  • Hong, Won-Pyo;Jung, Gi-Uhn
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.109-115
    • /
    • 2005
  • This paper addresses the CAN based networked intelligent multi-motor control system using DSP2812 microprocessor. CAN built in DSP2812 microprocessor is used to control and monitor the multi-motor system with the inverter driving system CAN network implementation schemes and the algorithm for multi-motor control and monitoring is also developed. We configure the multi-motor control experimental system to verify the proposed algerian and the reliability of CAN networks system in the various operation of two induction motors. The experimental results show that CAN based networked intelligent multi-motor control system using DSP2812 microprocessor can carry out the real-time network based control in various speed range and the position control of induction motors.

A Study on Distributed Message Allocation Method of CAN System with Dual Communication Channels (중복 통신 채널을 가진 CAN 시스템에서 분산 메시지 할당 방법에 관한 연구)

  • Kim, Man-Ho;Lee, Jong-Gap;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1018-1023
    • /
    • 2010
  • The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.

Application of Controller Area Network to Humanoid Robot (휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용)

  • Ku, Ja-Bong;Huh, Uk-Youl;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF

Analysis of Response Characteristics of the CAN-Based Feedback Control System Considering the Network Delay Time

  • Jeon, Jong-Man;Kim, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.119.3-119
    • /
    • 2001
  • When building a network-based real-time control system, a network-induced delay time should be surly considered for real time schedulability to be guaranteed. The network delay time on end-to-end communication has been analyzed theoretically and modeled mathematically from many previous works. There also exist any other delay element not considered before. In this paper, the remote feedback control system using the CAN protocol is proposed to control three axes´ manipulator arm and the application layer of CAN is modeled to analyze the delay elements defined by three types of time delay: Software delay time, Controller delay time, and Access delay time, in details. The analyzed results are used as an important component to determine PID gains of the proposed system. The effect of the delay time on the control performance is evaluated by com paring the response characteristics of the control system through simulation.

  • PDF

Realization of a neural network controller by using iterative learning control (반복학습 제어를 사용한 신경회로망 제어기의 구현)

  • 최종호;장태정;백석찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.230-235
    • /
    • 1992
  • We propose a method of generating data to train a neural network controller. The data can be prepared directly by an iterative learning technique which repeatedly adjusts the control input to improve the tracking quality of the desired trajectory. Instead of storing control input data in memory as in iterative learning control, the neural network stores the mapping between the control input and the desired output. We apply this concept to the trajectory control of a two link robot manipulator with a feedforward neural network controller and a feedback linear controller. Simulation results show good generalization of the neural network controller.

  • PDF

Network Type Distributed Control System with Considering Data Collision (데이터 충돌을 고려한 네트워크형 분산 제어 시스템)

  • Choi, Goon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • Network type distributed control system uses a communication line which is named the BUS to exchange a data among the sub-systems. Usually, on the bus, only one data must be exited at one time, so the control algorithm to prevent collision or to manage a priority of data is important. Including CAN Protocol, many kind of FieldBus which are used for distributed control system, prevent data collision by controlling transmission time. But, a system which have to make a control signal or get a data from a sensor at fixed time will be met a problem when it is composed by using a network type distributed control structure. In this paper, some of these cases will be discussed and solutions be proposed for preventing a data collision. Also, using Arago Disk System which have a structure for inner loop control, the validity of the proposed methods will be verified.

Network-Based Overhead Crane Control System Using Matrix Converters (매트릭스 컨버터를 사용한 네트워크 기반 천정형 크레인 제어 시스템)

  • Lee, Hong-Hee;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • This paper presents supervisor control methods at a matrix converter controlled overhead crane system based on a controller area network (CAN). Four induction motors are used to drive the gantry, trolley, and hoist at he crane and each motor is controlled by the matrix converter with direct torque control (DTC). Both the position control algorithm and the supervisor control system using CAN are introduced. Simulation and experimental results are carried out to verify the performance of position control at the matrix converter controlled crane system.

CAN-based Feedback Control System Applied to Korean high-speed Train Pressurization System considering Network Delay (지연시간이 고려된 CAN 기반 피드백 제어시스템의 한국형 고속전철 여압시스템 적용)

  • Kwak, Kwon-Chon;Kim, Hong-Ryeol;Kim, Joo-Min;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2445-2447
    • /
    • 2002
  • In this paper, CAN-based feedback control system is proposed for the pressurization system of korean high-speed train. The control performance of the system is evaluated. According to the requirement of the pressurization system A process model considering network delay and an adaptive PID control method based on the process model are proposed here. And it is shown that the proposed adaptive PID control method considering the network delay has on adequate feature compared to some other existing methods consequently it can be considered to be applied the pressurization system of korean high-speed train.

  • PDF