• Title/Summary/Keyword: CAN(Control Area Network)

Search Result 516, Processing Time 0.032 seconds

Processing of Congestion Problem in the Interworking Node (연동 노드에서 집중 문제 처리)

  • 김평중
    • Journal of the Korean Professional Engineers Association
    • /
    • v.29 no.3
    • /
    • pp.94-104
    • /
    • 1996
  • When Broadband Integrated Services Digital Network(BISDN) becomes commercially available In public network, conventional Local Area Network(LAN)s will still be in use. The first wide spread application for B-ISDN will be the interconnection of LANs. The equipment providing the connection between the LAN and the BISDN will be given the general name Inter Working Unit(IWU). We addresses the congestion problem of many interworking issues. In this paper, Our study is concentrated on applying connectionless network protocol for interworking. We suggest a rate control method in the network layer to prevent a buffer overflow in the IWU. Since this rate control method can be applied to prevent buffer overflow in a congested IWU, We investigate the use of rate control to solve congestion problems of IWU and parallize network layer with rate control to lessen the congestion problem in IWU.

  • PDF

Intelligent Air Quality Sensor System with Back Propagation Neural Network in Automobile

  • Lee, Seung-Chul;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.468-471
    • /
    • 2005
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. One chip sensor module which include above two sensing elements, humidity sensor and bad odor sensor was developed for AQS (air quality sensor) in automobile. With this sensor module, PIC microcontroller was designed with back propagation neural network to reduce detecting error when the motor vehicles pass through the dense fog area. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation. One chip microcontroller, Atmega128L (ATmega Ltd., USA) was used. For the control and display. And our developed system can intelligently detect the bad odor when the motor vehicles pass through the polluted air zone such as cattle farm.

  • PDF

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

An Implementation of the Position Controller for Multiple Motors Using CAN (CAN 통신을 이용한 다중모터 위치제어기 구현)

  • Yi, Keon-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents a controller for the multiple DC motors using the CAN(Controller Area Network). The controller has a benefit of reducing the cable connections and making the controller boards compact through the network including expansibility. CAN, among the field buses, is a serial communication methodology which has the physical layer and the data link layer in the ISO's OSI (Open System Interconnect) 7 layered reference model. It provides the user with many powerful features including multi-master functionality and the ability to broadcast / multicast telegrams. When we use a microprocessor chip embedding the CAN function, the system becomes more economical and reliable to react shortly in the data transmission. The controller, we proposed, is composed of two main controllers and a sub controller, which have built with a one-chip microprocessor having CAN function. The sub controller is plugged into the Pentium PC to perform a CAN communication, and connected to the main controllers via the CAN. Main controllers are responsible for controlling two motors respectively. Totally four motors, actuators for the biped robot in our laboratory, are controlled in the experiment. We show that the four motors are controlled properly to actuate the biped robot through the network in real time.

Indoor Positioning Using WLAN Signal Strength (무선랜의 신호세기를 이용한 실내 측위)

  • Kim, Suk-Ja;Lee, Jin-Hyun;Jee, Gyu-In;Lee, Jang-Gyu;Kim, Wuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.742-747
    • /
    • 2004
  • Outdoors we can easily acquire our accurate location by GPS. However, the GPS signal can't be acquired indoors because of its weak signal power level. Adequate positioning method is demanded for many indoor positioning applications. At present, wireless local area network (WLAN) is widely installed in various areas such as airport, campus, and park. This paper proposes a positioning algorithm using WLAN signal strength to provide the position of the WLAN user indoors. There are two methods for WLAN based positioning, the signal propagation method uses signal strength model over space and the empirical method uses RF power propagation database. The proposed method uses the probability distribution of the power propagation and the maximum likelihood estimation (MLE) algorithm based on power strength DB. Test results show that the proposed method can provide reasonably accurate position information.

Performance Evaluation of a Method to Improve Fairness in In-Vehicle Non-Destructive Arbitration Using ID Rotation

  • Park, Pusik;Igorevich, Rustam Rakhimov;Yoon, Jongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5098-5115
    • /
    • 2017
  • A number of automotive electronics-safety, driver assistance, and infotainment devices-have been deployed in recent vehicles. This raises new challenges regarding in-vehicular network arbitration. A performance analysis of non-destructive arbitration has revealed a fairness issue. The arbitration prioritizes without collisions, despite multiple simultaneous transmissions; however, the performances of the highest priority node and the lowest priority node are very different. In this paper, an ID-rotation arbitration method to solve the arbitration-fairness problem is proposed. The proposed algorithm was applied to several engine control units (ECUs), including a controller area network (CAN) controller. Experimental results showed that the algorithm improved the fairness as well as the total throughput within a specific performance constraint.

Development of Coordinated Scheduling Algorithm and End-to-end Delay Analysis for CAN-based Distributed Control Systems (CAN기반 분산 제어시스템의 종단 간 지연시간 분석과 협조 스케줄링 알고리즘 개발)

  • 이희배;김홍열;김대원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.501-508
    • /
    • 2004
  • In this paper, a coordinated scheduling algorithm is proposed to reduce end-to-end delay in distributed control of systems. For the algorithm, the analysis of practical end-to-end delay in the worst case is performed priory with considering implementation of the systems. The end-to-end delay is composed of the delay caused by multi-task scheduling of operating systems, the delay caused by network communications, and the delay caused by asynchronous timing between operating systems and network communications. Through some simulation tests based on CAN(Controller Area Network), the proposed worst case end-to-end delay analysis is validated. Through the simulation tests, it is also shown that a real-time distributed control system designed to existing worst case delay cannot guarantee end-to-end time constraints. With the analysis, a coordinated scheduling algorithm is proposed here. The coordinated scheduling algorithm is focused on the reduction of the delay caused by asynchronous timing between operating systems and network communications. Online deadline assignment strategy is proposed for the scheduling. The performance enhancement of the distributed control systems by the scheduling algorithm is shown through simulation tests.

Redundancy Management of Brake-by-wire System using a Message Scheduling (메시지 스케줄링을 이용한 Brake-by-wire 시스템의 Redundancy Management)

  • Yune, J. W.;Kim, K. W.;Kim, T. Y.;Kim, J. G.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.717-720
    • /
    • 2000
  • Event-driven communication protocols such as CAN(Controller Area Network) have inherent packet delays due to the contention process for the use of network medium. These delays are stochastic in nature because most packets arrive at random time instants. The stochastic property of the delay adversely influences the control system's performance in terms of stability, responsiveness and steady-state error. Another problem for safety-critical application such as brake-by-wire systems is the reliability of the communication modules that can fail abruptly. This paper deals with two methods to overcome the above problems : (i) scheduling method that can maintain packet delays under some acceptable level, and (ii) redundancy management of communication modules that prescribes dual-redundancy modules' behavior when one of them fails.

  • PDF

Traffic Test Method for Networked Control System (네트워크 기반 제어시스템의 통신부하 시험방법)

  • Yu, Kwang-Myung;Kim, Jong-An;Ryu, Ho-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.688-695
    • /
    • 2013
  • Networked Control Systems(NCS) contain the structure which controllers, actuators and sensors are connected to communication network. And they have been adopted in large and complicated plant area due to the advantages of mitigating computational bottleneck and maintenance. Although this structure provides many benefits, it brings in problems of unpredictable communication delay, data loss and corruption. This phenomena have to be considered in designing NCSs since it affects on overall control system stability. This paper introduces network traffic test method for ethernet based NCSs to find out maximum network usage which guarantee stable control operation. Test results shows this methods can be adopted in various types of NCSs and contributes economical system design and effective system operation.

Traffic Analysis of a CAN-based Control System

  • Kim, Dae-Won
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.35-42
    • /
    • 2001
  • This paper deals with an architecture of network-based control system using the CAN(Controller Area Network) protocol and its traffic analysis. It is difficult to determine an optimal network-based control architecture for a specific AGV(Autonomous Guided Vehicle) system with a manipulator arm. The fixed number of periodic messages to be occurred is pre-defined in the system. To determine whether the proposed system architecture is effective or not, we perform traffic analysis for the real-time communication of all messages. Through simulations, the range of transmission speed is found satisfying required conditions and the permissible number of additional sensors is investigated for improving the system performance, when the sampling periods of analog sensors are determined under fixed condition that the transmission speed is over 500Kbps.

  • PDF