• Title/Summary/Keyword: CA container

Search Result 39, Processing Time 0.016 seconds

Effectiveness of controlled atmosphere container on the freshness of exported PMRsupia melon (CA 컨테이너를 이용한 수출 멜론의 선도유지 효과)

  • Haejo Yang;Min-Sun Chang;Puehee Park;Hyang Lan Eum;Jae-Han Cho;Ji Weon Choi;Sooyeon Lim;Yeo Eun Yun;Han Ryul Choi;Me-Hea Park;Yoonpyo Hong;Ji Hyun Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.822-832
    • /
    • 2023
  • This study investigates the effectiveness of CA (controlled atmosphere) containers in maintaining the freshness of exported melons. The melons were harvested on June 5, 2023, in the Yeongam area of Jeollanam-do, Korea. The CA container was loaded with melon samples packed in an export box. The temperature inside the container was set at 4℃, while the gas composition was set at 5% oxygen, 12% carbon dioxide, and 83% nintrogen. Following two weeks of simulated transportation, quality analysis was conducted at 10℃. The melons were inoculated with spore suspensions, and the decay rate was determined to investigate the effect of the gas composition inside the CA container on suppressing the occurrence of Penicillium oxalicum in melons. The results were compared with a Reefer container set at the same temperature. The samples transported in the CA container exhibited lower weight loss. The melon pulp softening, respiration rate, and ethylene production were slower using the CA container. Moreover, the decay rate during the distribution period in the CA container was lower than in the Reefer container. In contrast, the firmness of melons transported in the Reefer container decreased significantly (from 9.03N to 5.18N) immediately after transportation. The soluble solid content (SSC) of melons transported in the Reefer container also decreased rapidly. The results suggested that the CA container is the optimal export container for maintaining the freshness of melons.

Combined Effects of Container Volume and Fertilizer Level on Plant Growth, Physiological Characteristics, and Nutrient Uptake of Vinca Plant (Catharanthus roseus)

  • Kang, Jong-Goo;Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • The aim of our study was to investigate the interactive effects of container size and nutrient supply on plant growth, chlorophyll synthesis, transpiration, $CO_2$ assimilation, water use efficiency (WUE), and nutrient uptake of vinca plant (Catharanthus roseus). A complete experiment utilizing four concentrations of fertilizer and three volumes of containers was conducted. As the container size was increased, the plant height, leaf area, and dry weight of vinca significantly increased regardless of fertilizer level. The leaf area and dry weight of vinca were highly sensitive to the container size. However, the chlorophyll contents of vinca 20 days after the transplant significantly increased with decreasing container sizes and increasing fertilizer concentrations. Significant differences in transpiration and $CO_2$ assimilation occurred with the use of differentfertilizer solutions, but the highest values for transpiration and $CO_2$ assimilation were in plants grown in the 15 cm-diameter containers. The highest water use efficiency was observed in the plants grown in 10 cm-containers with 4 dS/m of fertilizer, and there were no significant differences in WUE values among container sizes with fertilizer concentrations of 0, 1, or 2 dS/m. No significant difference in nutrient uptake was observed among the fertilizer levels or among the container sizes. However, at a fertilizer concentration of 4 dS/m, the uptake of several nutrients, including N, P, K, Ca, Mg, B and Fe, was higher in small containers than in larger ones.

Effect of Containers on the stability of Malathion emulsion concentrates (E.C.) (Malathion 유제(乳劑)의 포장용기(包裝容器)에 따른 경시변화(經時變化))

  • Lee, D.S.;Lee, J.Y.;Lee, S.H.
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.15-19
    • /
    • 1966
  • In order to investigate the stability of the major component of malathion E.C. product, dimethyl S-(1, 2-dicarboxyethoxyethyl) dithiophosphate, toward the quality of glasswares as container, the amount of extractable inorganic components, change of pH and decomposition of the major component of the product were examined during the storage in brown-colored bottles of 100 ml. volume from 3 different companies in comparison with that in a Pyrex flask. 1. Malathion E.C. product was put in three containers A,B and C, and any changes occurring in storage were analyzed at three intervals of 60, 120 and 240 days. 2. It was shown that the amounts of Si, Mg, K, Ca, and Na extracted during these periods of storage differed markedly depending on the qualify of container. Container A revealed ten times higher extraction of Na and Ca than container B and C in a 8-month period. 3. Three commercial containers revealed the shift of pH from 6.5 to alkaline reaction in the storage whereas the Pyrex flask did not show any detectable change. In particular, the pH in container A changed to 9.2 in 60 days and 9.9 in 240 days. 4. The decomposition of malathion was the greatest in container A which showed the decomposition of 7.37% in 240 days. On the other hand, 0.5% was decomposed in the Pyrex flask. 5. The decemposition of malathion had a high correlation with the change of pH of water· in the same container, $r^2$ being 0.899. From the above results, it is concluded that about 10% of malathion E.C. product is decomposed in a year due to the alkaline metallic salts extracted from the container when it is stored in glassware bottles of lower quality.

  • PDF

Physico·Chemical Properties of Organic and Inorganic Materials Used as Container Media (혼합배지 조제에 이용되는 유·무기 물질들의 물리·화학적 특성)

  • Choi, Jong Myung;Chung, Hae Joon;Choi, Jong Seung
    • Horticultural Science & Technology
    • /
    • v.18 no.4
    • /
    • pp.529-535
    • /
    • 2000
  • Organic materials such as composted rice-hull, saw dust, and pine bark, and inorganic materials such as vermiculite, perlite, and recycled rockwool were commonly employed as container media in domestic greenhouse industry. The objective of this research was to get informations in soil physico chemical properties of those materials. Composted dry-peeling bark and wet-peeling bark had 72.1% and 69.1%, respectively, in particles larger than 1.0 mm, which were much higher than 34.7% of composted rice-hull and 33.7% of composted saw dust. Imported vermiculite had 89.9%, but domestic vermiculite had 25.7% in particles larger than 1 mm. In soil physical properties, Russian peat had the highest container capacity of 79.3%, and wet-peeling bark had the lowest container capacity of 58.2%. However, Russian peat and composted saw-dust had 4.1% in air space indicating that possible problems could occur in soil aeration when those are employed for container grown crops. Saw dust had $2.3mS{\cdot}cm^{-1}$ in electrical conductivity, while other composted organic materials had less than $0.25mS{\cdot}cm^{-1}$. Imported vermiculite had 64.0 meq/100 g in cation exchange capacity, which was 2.4 times higher than those of domestic vermiculite, 27.2 meq/100 g. Domestic vermiculite had higher Ca and Mg and less Na contents than those of imported vermiculite.

  • PDF

Proposal of Application Method for Concentration Averaging of Radioactive Waste in Korea by Using CA BTP of US NRC

  • Jiyoung Yi;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.347-357
    • /
    • 2023
  • United States Nuclear Regulatory Commission (U.S. NRC) specifies regulations on obtaining licenses and describes the technical position on the average waste concentration, also known as Concentration Averaging and Encapsulation Branch Technical Position (CA BTP); CA BTP helps classify blendable waste and discrete items and address concentration averaging. The technical position details are reviewed and compared in a real environment in Korea. A few cases of concentration averaging based on the application of CA BTP to domestic radioactive waste are presented, and the feasibility of the application is assessed. The radioactive waste considered herein does not satisfy the Disposal Concentration Limit (DCL) of the second-phase disposal facility while applying the preliminary classification. However, if CA BTP is applied when the radioactive waste is mixed with other radioactive waste items in a large and heavy container, it can be disposed of at the second-phase disposal facility in Gyeongju Repository. To apply the CA BTP of the U.S. NRC, it is necessary to investigate the safety assessment conditions of the US and Korea.

Electrochemical Reduction of SiO2 Granules to One-Dimensional Si Rods Using Ag-Si Eutectic Alloy

  • Lee, Han Ju;Seo, Won-Chul;Lim, Taeho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.392-398
    • /
    • 2020
  • Producing solar grade silicon using an inexpensive method is a key factor in lowering silicon solar cell costs; the direct electrochemical reduction of SiO2 in molten salt is one of the more promising candidates for manufacturing this silicon. In this study, SiO2 granules were electrochemically reduced in molten CaCl2 (850℃) using Ag-Si eutectic droplets that catalyze electrochemical reduction and purify the Si product. When Ag is used as the working electrode, the Ag-Si eutectic mixture is formed naturally during SiO2 reduction. However, since the Ag-Si eutectic droplets are liquid at 850℃, they are easily lost during the reduction process. To minimize the loss of liquid Ag-Si eutectic droplets, a cylindrical graphite container working electrode was introduced and Ag was added separately to the working electrode along with the SiO2 granules. The graphite container working electrode successfully prevented the loss of the Ag-Si eutectic droplets during reduction. As a result, the Ag-Si eutectic droplets acted as stable catalysts for the electrochemical reduction of SiO2, thereby producing one-dimensional Si rods through a mechanism similar to that of vapor-liquid-solid growth.

Fabrication of Disposable pH Sensor with Micro-volume Type (Micro-volume형 일회용 pH 센서 제작)

  • Jung, Ho;Kim, Heung-Rak;Kim, Young-Duk;Jung, Woo-Chul;Kim, Dong-Su;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.950-952
    • /
    • 2003
  • This paper have been studied fabrication and characteristics of disposable pH sensor using MEMS technology. The sensor has two open-well structure, the container for the internal electrolyte and electrode were formed by anisotropically etching a silicon substrate. unlike currently used KCI saturated solution, the structure was introduced hydrogel which take an advantage of miniaturization, bulk product, a low price. PU and CA/TP used to measurement ion detection, one is reference membrane and the other is pH. fabricated sensor is encapsulated entirely with epoxy, finally sensor was estimated various ion sorts and pH ranges.

  • PDF

Development of a Low-cost Automatic Water Quality Diagnosis System for Cooling Towers (저가형 냉각탑 자동 수질 진단 시스템 개발)

  • Kim, Jung Hwan;Park, Han-Bin;Kang, Taesam;Park, Jungkeun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.58-65
    • /
    • 2014
  • We developed a low-cost automatic diagnosis system for water quality in cooling towers to measure the concentrations of key ingredients such as $Ca^{2+}$, $Cl^-$, $PO{_4}^{3-}$, and $Fe^{2+}$. $Ca^{2+}$, and $Cl^-$ are the main factors that cause the generation of scale, corrosion, and sludge in water pipes. $PO{_4}^{3-}$ prevents corrosion, sludge and scale by inhibiting the ions (i.e., $Ca^{2+}$, $Cl^-$) from sticking to the pipes. $Fe^{2+}$ is an indicator of pipe corrosion. The proposed system consists of a microprocessor, a specimen container and heater, a precision pump, relays and valves, LED optical sources, and photo detectors. It automatically collects water samples and carries out pretreatment for determining the concentration of each chemical, and then estimates the concentration of each ion using low-cost LED optical sources and detectors. Experimental results showed that the accuracy of the proposed system is sufficiently high for water quality diagnosis and management of cooling towers, demonstrating the possibility of the proposed system's wide usage in real environments.

Effects of Seed Size and Several Factors on Ultra-drying and Germination of Ultra-dried Seeds in Soybean

  • Lee, Yeong-Ho;Chang, Ching-huan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.305-309
    • /
    • 2000
  • Ultra-drying [<5.0% seed moisture content (SMC)] storage technique is a cost-effective storage method for oily seeds. To decide proper ultra-drying condition for soybean seeds, drying rate was compared three silica gel to seed ratios, two seed sizes with varietal difference, two kinds of container, and three seed amounts per container under :t 23$\pm$1$^{\circ}C$. When the relative humidity (RH) was reduced at the rate of less than 0.1 % a day, silica gel was replaced with dry one by 47 days. Higher silica gel to seed ratios (3:1 and 2:1) dried faster than lower ratio (1:1) until 28 days, but not after 43 days of drying. Also, large seeded variety was dried faster than small seeded variety. Kinds of container and seed amounts per container didn't show differences in drying of soybean seeds. After completion of ultra-drying, percentage germination by standard germination test (SGT) was not different among silica gel to seed ratios, kinds of container, and seed amounts per container, except among seed sizes (varieties). Before SGT, soybean seeds were premoistened using saturated ${CaCl}_2$ for 48 hours and ${NH}_4$Cl for 24 hours in desiccators. To compare germinability between ordinary-dried seeds and ultra-dried seeds, the seeds of seven soybean varieties, which were varying in size from 8.1 to 34.9 g per 100 seeds, were dried using same amount of silica gel under 23$\pm$1$^{\circ}C$. After completion of 76 days of drying, SMCs were reduced to 3.13-3.45% from 7.86-8.82%. SMC after completion of drying was not correlated with 100-seed weight (r=0.556). Before germination tests, soybean seeds were premoistened using saturated salt solutions. Percentage germination was higher with ultra-dried seeds than ordinary-dried seeds in SGT and higher with ordinary-dried seeds than ultra-dried seeds in AAT at the beginning of storage and after 6 months storage, but general trend of percentage germination was not observed among varieties classified by 100-seed weight. From these results, we concluded that further studies are needed to improve ultra-drying storage method for soybean seeds.

  • PDF

An Analysis of Transshipment Competitiveness of Container Cargoes in Incheon New Port (인천신항의 환적경쟁력 분석에 대한 연구)

  • Ahn, Woo-Chul;Yeo, Gi-Tae;Yang, Chang-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.26 no.1
    • /
    • pp.20-42
    • /
    • 2010
  • This study is aimed at evaluating transshipment competitiveness of Incheon New Port which will open in 2013. For this reason, we used Conjoint Analysis(CA) for a methodology of this research as CA had been frequently adopted for empirical analysis of new container terminal in previous studies. We have provided the questionnaires to the stake holders of the port such as experts in Port Authority(PA), logistics companies, and terminal operators. The result showed that transshipment competitiveness of Incheon New Port was subordinate to transshipment costs and port costs of Busan and Shanghai. Overall, we hope this study could help draw up the policies on a New Port that will attract transshipment cargoes and set up marketing plan for an early settlement.