Combined Effects of Container Volume and Fertilizer Level on Plant Growth, Physiological Characteristics, and Nutrient Uptake of Vinca Plant (Catharanthus roseus)

  • Kang, Jong-Goo (Department of Horticulture, Sunchon National University) ;
  • Chon, Sang-Uk (EFARINET Co. Ltd., BI Center, Chonsun University)
  • Published : 2010.09.30

Abstract

The aim of our study was to investigate the interactive effects of container size and nutrient supply on plant growth, chlorophyll synthesis, transpiration, $CO_2$ assimilation, water use efficiency (WUE), and nutrient uptake of vinca plant (Catharanthus roseus). A complete experiment utilizing four concentrations of fertilizer and three volumes of containers was conducted. As the container size was increased, the plant height, leaf area, and dry weight of vinca significantly increased regardless of fertilizer level. The leaf area and dry weight of vinca were highly sensitive to the container size. However, the chlorophyll contents of vinca 20 days after the transplant significantly increased with decreasing container sizes and increasing fertilizer concentrations. Significant differences in transpiration and $CO_2$ assimilation occurred with the use of differentfertilizer solutions, but the highest values for transpiration and $CO_2$ assimilation were in plants grown in the 15 cm-diameter containers. The highest water use efficiency was observed in the plants grown in 10 cm-containers with 4 dS/m of fertilizer, and there were no significant differences in WUE values among container sizes with fertilizer concentrations of 0, 1, or 2 dS/m. No significant difference in nutrient uptake was observed among the fertilizer levels or among the container sizes. However, at a fertilizer concentration of 4 dS/m, the uptake of several nutrients, including N, P, K, Ca, Mg, B and Fe, was higher in small containers than in larger ones.

Keywords

References

  1. Bar Tal, A., A. Feigin, I. Rylski, and E. Pressman. 1994a. Root pruning and $N-NO_{3}$ solution concentration effects on tomato plant growth and fruit yield. Sci. Hort. 58 : 91-103. https://doi.org/10.1016/0304-4238(94)90130-9
  2. Bar Tal, A., A. Feigin, I. Rylski, and E. Pressman. 1994b. Root pruning and $N-NO_{3}$ solution concentration effects on nutrient uptake and transpiration by tomato. Sci. Hort. 58 : 77-90. https://doi.org/10.1016/0304-4238(94)90129-5
  3. Ben Porath, A. and D.N. Baker. 1990. Taproot restriction effects on growth, earliness, and dry weight partitioning of cotton. Crop Sci. 30: 809-814. https://doi.org/10.2135/cropsci1990.0011183X003000040009x
  4. Cantliffe, D. J. 1993. Pre- and postharvest practices for improved vegetable transplant quality. HortTechnology 3 : 415-417.
  5. Carmi, A. 1986. Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crop Res. 13 : 25-32. https://doi.org/10.1016/0378-4290(86)90004-3
  6. Carmi, A. and B. Heuer. 1981. The role of roots in control of bean shoot growth. Ann. Bot. 48 : 519-527. https://doi.org/10.1093/oxfordjournals.aob.a086156
  7. Carmi, A. and J. Shalhevet. 1983. Root effects on cotton growth and yield. Crop Sci. 23 : 875-878. https://doi.org/10.2135/cropsci1983.0011183X002300050014x
  8. Flocker, W. J., J. A. Vomocill, and F. D. Howard. 1959. Some growth responses of tomato to soil compaction. Soil Sci. Soc. Amer. Proc. 23 : 188-191. https://doi.org/10.2136/sssaj1959.03615995002300030011x
  9. Jaleel, C. A., and R. Panneerselvam. 2007. Variations in the antioxidative and indole alkaloid status in different parts of two varieties of Catharanthus roseus, an important folk herb. Chin. J. Pharmacol. Toxicol. 21 : 487-494.
  10. Jaleel, C. A., P. Manivannan, A. Kishorekumar, B. Sankar, and R. Panneerselvam. 2007a. Calcium chloride effects on salinity induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. C. R. Biol. 330 : 674-683. https://doi.org/10.1016/j.crvi.2007.07.002
  11. Jaleel, C. A., P. Manivannan, B. Sankar,A. Kishorekumar, R. Gopi, R. Somasundaram, and R. Panneerselvam. 2007b. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf. B: Biointerf. 60 : 7-11. https://doi.org/10.1016/j.colsurfb.2007.05.012
  12. Jaleel, C. A., R. Gopi, B. Sankar, P. Manivannan, A. Kishorekumar, R. Sridharan, and R. Panneerselvam. 2007c. Alterations in germination, seedling vigour, lipid peroxidation, and proline metabolism in Catharanthus roseus seedlings under salt stress. South Afr. J. Bot. 73 : 190-195. https://doi.org/10.1016/j.sajb.2006.11.001
  13. Jaleel, C. A., R. Gopi, G. M. Alagu Lakshmanan, and R. Panneerselvam. 2006. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci. 171 : 271-276. https://doi.org/10.1016/j.plantsci.2006.03.018
  14. Jaleel, C. A., R. Gopi, P. Manivannan, and R. Panneerselvam. 2007d. Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol. Plant. 29 : 205-209. https://doi.org/10.1007/s11738-007-0025-6
  15. Jaleel, C. A., R. Gopi, P. Manivannan, and R. Panneerselvam. 2007e. Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turkish J. Bot. 31 : 245-251.
  16. Jaleel, C. A., R. Gopi, P. Manivannan, B. Sankar, A. Kishorekumar, and R. Panneerselvam. 2007f. Antioxidant potentials and ajmalicine accumulation in Catharanthus roseus after treatment with giberellic acid. Colloids Surf. B: Biointerf. 60 : 195-200. https://doi.org/10.1016/j.colsurfb.2007.06.009
  17. Jones, J. B. and V. W. Case. 1990. Sampling, handling, analyzing plant tissue samples. p. 389-427. In R. L. Westerman (ed.) Soil testing and plant analysis. 3rd ed. SSSA, Madison, WI.
  18. Karthikeyan, B., C. A. Jaleel, R. Gopi, and M. Deiveekasundaram. 2007. Alterations in seedling vigour and antioxidant enzyme activities in C. roseus under seed priming with native diazotrophs. J. Zhejiang Univ. Sci. B8 : 453-457.
  19. Krizek, D. T., A. Carmi, R. M. Mirecki, F. W. Snyder, and J. A. Bunce. 1985. Comparative effects of soil moisture stress and restricted root zone volume on morphogenetic and physiological response of soybean (Glycine max.(L.) Merr.). J. Expt. Bot. 36 : 25-38. https://doi.org/10.1093/jxb/36.1.25
  20. Marsh, D. B. and K. B. Paul. 1988. Influence of container type and cell size on cabbage transplant development and field performance. HortScience 23 : 310-311.
  21. Mills, H. A. and J. B. Jr. Jones. 1996. Plant Analysis Handbook II. A practical sampling, preparation, analysis, and interpretation guide. Athens, GA:Micromacro Publishing. 422 pp.
  22. NeSmith, D. S., D. C. Bridges, and J. C. Barbour. 1992. Bell pepper responses to root restriction. J. Plant Nutr. 15 : 2763-2776. https://doi.org/10.1080/01904169209364507
  23. Peterson, T. A., M. D. Reinsel, and D. T. Krizek. 1991a. Tomato (Lycopersicon esculentum Mill., cv. 'Better Bush') plant response to root restriction. I. Alteration of plant morphology. J. Exp. Bot. 42 : 1233-1240. https://doi.org/10.1093/jxb/42.10.1233
  24. Peterson, T. A., M. D. Reinsel, and D. T. Krizek. 1991b. Tomato (Lycopersicon esculentum Mill., cv. 'Better Bush') plant response to root restriction. II. Root respiration and Ethylene Generation. J. Exp. Bot. 42 : 1241-1249. https://doi.org/10.1093/jxb/42.10.1241
  25. Richards, D. and R. N. Rowe. 1977. Effects of root restriction, root pruning and 6-benzylaminopurine on the growth of peach seedling. Ann. Bot. 41 : 729-740. https://doi.org/10.1093/oxfordjournals.aob.a085347
  26. Ruff, M. S., D. T. Krizek, R. M. Mirecki, and D. W. Inouye. 1987. Restricted Root Zone Volume : Influence on Growth and Development of Tomato. J. Amer. Soc. Hort. Sci. 112 : 763-769.
  27. Shrivastava, A. K. 1996. Effect of fertilizer levels and spacings on flowering, fruit set and yield of sweet pepper (Capsicum annuum var. grossum L.) cv. Hybrid Bharat. Adv. Plant Sci. 9 : 171-175.
  28. Srivastava, N. K. and A.K. Srivastava. 2007. Influence of gibberellic acid on $^{14}CO_{2}$ metabolism, growth, and production of alkaloids in Catharanthus roseus. Photosynthetica. 45 : 156-160. https://doi.org/10.1007/s11099-007-0026-0
  29. Tschaplinski, T. J. and T. J. Blake. 1985. Effects of root restriction on growth correlations, water relations and senescence of alder seedling. Physiol. Plant. 64 : 167-176. https://doi.org/10.1111/j.1399-3054.1985.tb02331.x
  30. Vos, J. G. M. and H. D. Frinking. 1997. Nitrogen fertilization as a component of integrated crop management of hot pepper (Capsicum spp.) under tropical lowland conditions. Intern. J. Pest. Manag. 43 : 1-10. https://doi.org/10.1080/096708797228915
  31. Weston, L. A. and B. H. Zandstra. 1986. Effect of root container size and location of production on growth and yield of tomato transplants. J. Amer. Soc. Hort. Sci. 11 : 498-501.