• Title/Summary/Keyword: C2C12 differentiation

Search Result 221, Processing Time 0.025 seconds

Immunomodulating Activity of BL18 (Ganshu) Acupuncture on the Experimental Liver Metastasis Model of Mice

  • Kim, Myoung-Dong;Kim, Sung-Hoon;Lee, Soo-Jin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.760-764
    • /
    • 2007
  • We investigated that the immunomodulating activity of BL18 (Ganshu) acupuncture on the experimental liver metastasis model of mice. NA (non-acupoint)- and BL18-treatment enhanced the mitogenic activity of BALB/c whole splenocytes induced by various mitogenic stimuli. Acupuncture treatment tended to increase splenocytes differentiation even though did not show significance. Acupuncture treatment caused a marked increase of production of Th1 cytokine (IFN-${\gamma}$) and Th2 cytokine (IL-4) by splenocytes and IL-12 and IFN-Y by macrophages. The increase of cytokine production on BL18-treated group was more pronounced compared to NA-treated group. The liver weight of NA- and BL18-treated group decreased compared to tumor group, but did not showed significant differences.

Effects of Water Temperature and Estradiol-17β on the Sex Ratio and Growth of the Japanese Eel, Anguilla japonica (극동산 뱀장어, Anguilla japonica의 성비와 성장에 미치는 수온 및 estradiol-17β의 효과)

  • Kim, Dae-Jung;Lee, Nam-Sil;Kim, Shin-Kown;Lee, Bae-Ik;Seong, Ki-Baik;Kim, Kyung-Kil
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1454-1459
    • /
    • 2013
  • This study investigated the effects that water temperature and the administration of estradiol-17${\beta}$ (E2) had on the sex ratio and growth of the Japanese eel, Anguilla japonica. Glass eels (total length${\fallingdotseq}$6.5 cm) were differentiated into an E2 group and an E2-free group and then they were reared for about four months at three water temperature levels of $20^{\circ}C$, $24^{\circ}C$, and $28^{\circ}C$. The results showed that the young eels survived normally at the rearing water temperature of ${\geq}24^{\circ}C$, and grew to a mean size of 20 cm (total length). In the E2-free group, temperature was not found to increase the sex ratio (feminizing rates); however, the sex ratio of the E2-administrated group was found to be a little higher at a high temperature ($28^{\circ}C$). The growth of the E2 group was lower than the growth of the E2-free group at $24^{\circ}C$ and the E2 concentration levels in the plasma at $24^{\circ}C$ were found to be significant after the end of the E2 administration period (178 days). Therefore, we thought that long-term administration of E2 must be considered to be the reason for growth decline in spite of the prominent sex ratio effect. Our results indicate that temperature was not related to an increase in the feminizing rate (sex ratio) in the Japanese eel, Anguilla japonica, and other environmental factors (rearing density, salinity, etc.) that have the possibility of inducing ovarian differentiation must be investigated.

IL-34 Aggravates Steroid-Induced Osteonecrosis of the Femoral Head via Promoting Osteoclast Differentiation

  • Feng Wang;Hong Sung Min;Haojie Shan;Fuli Yin;Chaolai Jiang;Yang Zong;Xin Ma;Yiwei Lin;Zubin Zhou;Xiaowei Yu
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.25.1-25.11
    • /
    • 2022
  • IL-34 can promote osteoclast differentiation and activation, which may contribute to steroid-induced osteonecrosis of the femoral head (ONFH). Animal model was constructed in both BALB/c and IL-34 deficient mice to detect the relative expression of inflammation cytokines. Micro-CT was utilized to reveal the internal structure. In vitro differentiated osteoclast was induced by culturing bone marrow-derived macrophages with IL-34 conditioned medium or M-CSF. The relative expression of pro-inflammation cytokines, osteoclast marker genes, and relevant pathways molecules was detected with quantitative real-time RT-PCR, ELISA, and Western blot. Up-regulated IL-34 expression could be detected in the serum of ONFH patients and femoral heads of ONFH mice. IL-34 deficient mice showed the resistance to ONFH induction with the up-regulated trabecular number, trabecular thickness, bone value fraction, and down-regulated trabecular separation. On the other hand, inflammatory cytokines, such as TNF-α, IFN-γ, IL-6, IL-12, IL-2, and IL-17A, showed diminished expression in IL-34 deficient ONFH induced mice. IL-34 alone or works in coordination with M-CSF to promote osteoclastogenesis and activate ERK, STAT3, and non-canonical NF-κB pathways. These data demonstrate that IL-34 can promote the differentiation of osteoclast through ERK, STAT3, and non-canonical NF-κB pathways to aggravate steroid-induced ONFH, and IL-34 can be considered as a treatment target.

Study on the Method of Differentiating between Fresh and Frozen Chicken Meat by Using Mitochondrial Malate Dehydrogenase Activity (Mitochondrial Malate Dehydrogenase 활성을 이용한 냉장계육과 냉동계육의 판별법에 관한 연구)

  • 이치호;서정희;이지영;류경희
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.151-155
    • /
    • 2004
  • This study was performed to develop the method of differentiation fresh and frozen meat by using the measurement of mitochondrial malate dehydrogenase. The principle of this experiment is based on the fact the enzyme proteins associated with mitochondria membrane could be released by freezing. The methods were studied by measurements of protein concentration of meat press juice, WHC (water-holding capacity), drip loss and mitochondrial malate dehydrogenase enzyme activity. Samples were stored at 4$^{\circ}C$ and -18$^{\circ}C$ during storage period, respectively. Protein concentration of meat press juice was ranged from 8.5 mg/mL to 12.7 mg/mL and increased by freezing below at -18$^{\circ}C$(p<0.05). The WHC was not significantly different between fresh meat and frozen chicken meat (p>0.05). The amount of drip loss of fresh and frozen chicken meat at 4$^{\circ}C$ and -18$^{\circ}C$ was not significantly different (p>0.05). Mitochondrial malate dehydrogenase activity of frozen meat (-18$^{\circ}C$) was significantly higher (p<0.05) than that of fresh meat. Also, enzyme activity of frozen meat was maintained at the same level after 3 minutes reaction. But fresh meat had not this reaction. From these results, it suggests that mitochondrial malate dehydrogenase can be used as a promising enzyme to differentiate between fresh and frozen meat.

The Implement of System on Microarry Classification Using Combination of Signigicant Gene Selection Method (정보력 있는 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.315-320
    • /
    • 2008
  • Nowadays, a lot of related data obtained from these research could be given a new present meaning to accomplish the original purpose of the whole research as a human genome project. In such a thread, construction of gene expression analysis system and a basis rank analysis system is being watched newly. Recently, being identified fact that particular sub-class of tumor be related with particular chromosome, microarray started to be used in diagnosis field by doing cancer classification and predication based on gene expression information. In this thesis, we used cDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer, created system that can extract informative gene list through normalization separately and proposed combination method for selecting more significant genes. And possibility of proposed system and method is verified through experiment. That result is that PC-ED combination represent 98.74% accurate and 0.04% MSE, which show that it improve classification performance than case to experiment after generating gene list using single similarity scale.

Zoledronate(Zometa(R))inhibits the formation of osteoblast in rat osteoblastic cell line UMR-106 (Zoledronate이 UMR-106 세포의 증식과 조골세포 형성에 미치는 영향)

  • Jeong, Ki-Hoon;Ryu, Dong-Mok;Jee, Yu-Jin;Lee, Deok-Won;Lee, Hyun-Woo
    • The Journal of the Korean dental association
    • /
    • v.46 no.10
    • /
    • pp.623-632
    • /
    • 2008
  • Purpose : The purpose of this study is to identify the effect of zoledronate(Zometa(R)), which is most common nitrogen containing bisphosphonate, on survival, proliferation, and differentiation of osteoblast. Material & Methods: Twenty four cell culture plates containing essential medium were seeded with UMR-106 cell lines, at density of 5 x $10^4 cells per plates. Each plates were incubated with 5% $CO^2 incubator at $37^{\circ}C$. Starting from 2 days after incubation, cell culture medias were replaced, and added with osteogenesis induction media and 0, 0.01, 0.1, 0.5, 1, $3\muM$ of zoledronate(Zometa(R)), every 2 days, for 12 days. Control group was plates not added with zoledronate($0\muM$), and experiment group were plates added with different concentration of zoledronates(0, 0.01, 0.1, 0.5, 1, $3\muM$). Mature osteoblasts were identified with Alizarine Red staining, and protein samples were collected. Optical density was determined at wavelength of 405nm with ELISA reader. For viability analysis, cells were harvested and incubated with propidium iodide, and analysed with flow cytometry. Western blot technique was used to analyse Runx2 protein of osteoblast. Results : Secretion of bone matrix decreased as zoledronate concentration increased, and zoledronate did not effect survival rate of UMR-106 cells when measured with flow cytometer. Expression of Runx2 protein was inhibited as zoledronate concentration increased. Conclusion : From the results, we were able to identify that increase of zoledronate concentration inhibited differentiation of UMR-106 cell to osteoblast, without effecting quantity or survival rate.

  • PDF

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

Differentiation of Fusarium oxysporum f. sp. fragariae Isolates by Random amplified Polymorphic DNA (RAPD) Analysis. (Random Amplified Polymorphic DNA(RAPD)를 이용한 딸기 시들음병균(Fusarium oxysporum f. sp. fragariae)의 분류)

  • 현재욱;박원목
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 1996
  • 본 실험은 이병 딸기의 조직에서 분리 동정된 시들음병균(Fusarium oxysporum f. sp. fragariae) 균주들의 유?거 변이를 random amplified polymorphic DNA(RAPD) marker들을 이용하여 조사하였다. 총 24개의 딸기 시들음병 균주들의 DNA를 주형으로 하여 16개의 random 10-mer primer들을 사용하여 증폭시킨 결과 총 231개의 marker들을 이용하여 유전적 변이를 조사해 본 결과 크게 RAPD I과 RAPD II의 2개 그룹으로 나눌 수 있었다. RAPD I그룹에 속하는 균주는 VCG A에 속하는 Y1, K1, K2, K3, K4, N2, N3, N4-1, N6-1, N6-2, N8, N9, N10, M1-2-1 균주, VCG B에 속하는 M4-1 균주 그리고 VCG C에 속하는 N1, Y2 균주들이었고, RAPD II그룹에는 VCG B에 속하는 M1-1, M2-2-1, M2-4-2, M3-2, M3-3-2 균주와 VCG D에 속하는 N1 1 균주가 속하였다. 이들 2그룹 간에는 31%의 유사성이 있었다.

  • PDF

Induction of Bone Morphogenetic Protein-2 from Gingival Epithelial Cells by Oral Bacteria

  • Kim, Young-Sook;Ji, Suk;Jung, Hong-Moon;Woo, Kyung-Mi;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.103-107
    • /
    • 2007
  • We hypothesized that plaque-associated bacteria may have a role in maintenance of alveolar bone. To test it, immortalized gingival epithelial HOK-16B cells were co-cultured with live or lysed eight plaque bacterial species and the expression levels of bone morphogenetic protein (BMP)-2 and -4 were examined by real time reverse transcription-polymerase chain reaction. Un-stimulated HOK-16B cells expressed both BMP-2 and -4. Co-culture with plaque bacterial lysates had significant effects on the level of BMP-2 but not on that of BMP-4. Five species including Streptococcus sanguinis, S. gordonii, Veillonella atypica, Porphyromonas gingivalis, and Treponema denticola substantially up-regulated the level of BMP-2. In contrary to the upregulatory effect of lysate, live T. denticola suppressed the expression of BMP-2. In addition, in vitro osteoblastic differentiation assay using C2C12 cells and the conditioned medium of HOK-16B cells confirmed the production of BMPs by gingival epithelial cells and the modulation of BMP expression by the lysates of S. sanguinis and T. denticola. In conclusion, we have shown that plaque bacteria can regulate the expression of BMP-2 by gingival epithelial cells, the physiologic meaning of which needs further investigation.

Effect of Low-Energy Laser Irradiation on the Proliferation and Gene Expression of Myoblast Cells (저출력 레이져 자극이 근육세포의 증식 및 유전자 발현에 미치는 효과)

  • Kwag, J.H.;Jeon, O.H.;Kang, D.Y.;Ryu, H.H.;Kim, K.H.;Jung, B.J.;Kim, C.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • Laser irradiation is known to affect various tissues such as skin, bone, nerve, and skeletal muscle. Laser irradiation promotes ATP synthesis, facilitates wound healing, and stimulates cell proliferation and angiogenesis. In skeletal muscle, laser irradiation is related to the proliferation of skeletal muscle satellite cells. Normal skeletal muscle contains remodeling capacity from myogenic cells that are derived from mononuclear satellite cells. Their processes are activated by the expression of genes related with myogenesis such as muscle-specific transcription factors (MyoD and Myf5) and VEGF (vascular endothelial growth factor). In this study, we hypothesized that laser irradiation would enhance and regulate muscle cell proliferation and regeneration through modulation of the gene expressions related with the differentiation of skeletal muscle satellite cells. $C_2C_{12}$ myoblastic cells were exposed to continuous/non-continuous laser irradiation (660nm/808nm) for 10 minutes daily for either 1 day or 5 days. After laser irradiation, cell proliferation and gene expression (MyoD, Myf5, VEGF) were quantified. Continuous 660nm laser irradiation significantly increased cell proliferation and gene expression compared to control, continuous 808nm laser irradiation, and non-continuous 660nm laser irradiation groups. These results indicate that continuous 660nm laser irradiation can be applied to the treatment and regeneration of skeletal muscle tissue.