• Title/Summary/Keyword: C-type electrode

Search Result 331, Processing Time 0.027 seconds

The Study of Comparison on Rapping Force on Generation of Corona Discharge Electrode of Electrostatic Precipitator (전기집진장치의 코로나 전류 발생 전극 제작에 따른 추타력 비교에 관한 연구)

  • Lee, Kang-Wuk;Park, Jeong-Ho;Jang, Seong-Ho;Lim, Woo-Taik;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.231-238
    • /
    • 2017
  • Rapid industrial development has led to a serious problem of pollution in the industrial sector. With the increasing social need for environmental protection, research on air pollution prevention equipment for reducing pollutants in industrial processes is actively being undertaken. The deterioration of existent, installed facilities, their increased emission rates, and the strengthening of the effluent quality standards make complying with permissible emission standards difficult. In fact, installing new electric precipitators or complementing existent facilities is inevitable. The expansion and complementation of the installed electrical precipitators have led to improvements in dust collection efficiency, shorter working times, and lower costs. Because of its easy installation and simple manufacturing process, the production method with the discharge electrode of an electric precipitator is widely used. The following conclusions were reached by classifying discharge electrodes into four types based on the production method and mutually comparing them by their dust collection efficiency. None of the four types used in this study were damaged by impact. However, we were able to confirm some strain from the compression sites of both type A and type B. Both type B and type C are expected to have greater dust collection efficiencies than the other models due to their large vibration transmissibility. Moreover, the high vibrational energy is expected to cause rapping damage during its operation. Particularly, in the case of type B, some of the strain was found at the end of the compression site. The coupling schemes of both type C and type D are out of vibration transmissibility. On the other hand, the ability to maintain straightness and solidity of the side is regarded as outstanding and stable. Type D has outstanding on-site workability, considering the presence of locking, structural stability, and work conditions. From these experiments, we determined that type C is the most ideal connection method of discharge electrode, considering its construction period of renovation. Type C is inferior to type D with regard to on-site workability. However, type C has outstanding dedusting transmission with regard to the straightness, solidity maintenance, and vibration of shearing stress.

Design & implementation of differential sensor using electrostatic capacitance method for detecting Ringer's solution exhaustion (링거액 소진 감지를 위한 정전용량방식의 차동센서 설계 및 제작)

  • Sim, Yo-Sub;Kim, Cheong-Worl
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.391-397
    • /
    • 2010
  • This paper proposes a differential structure sensor for detecting Ringer's solution exhaustion, in which three C-type electrodes of 10 mm width are disposed on a ringer hose at a distance of 5 mm each other in the direction of Ringer's solution flow. In the center of middle electrode, two capacitances are formed at the proposed sensor. When ringer hose is filled with Ringer's solution, there is no difference between two capacitances. But capacitance difference exist under the Ringer's solution shortage, because the shortage causes the hose filled with air from the top position electrode. The capacitance difference got to maximum 1.81 pF, when air was filled between top and middle electrode and the last of hose was filled with 10 % dextrose injection Ringer's solution. The capacitance difference varied with hose-wraparound coverage of electrodes as well as the width of them. For hose-wraparound electrode coverage of 90 % and 70 %, the maximum capacitance difference was 1.81 pF and 1.56 pF, respectively. A differential charge amplifier converted the capacitance difference to electric signal, and minimized electrodes' adhering problem and external noise coupling problem.

Characteristics Improvement of Plate-Type Ozonizer using Inverse-Polarity Voltage and Accumulative Method (역극성 전압인가와 적층법을 이용한 판형오존발생기의 특성개선)

  • Lee, Sang-Geun;Park, Yong-Gwon;Lee, Dong-Uk;Jeon, Byeong-Jun;Song, Hyeon-Jik;Lee, Gwang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.614-621
    • /
    • 2001
  • In this Paper, the ozonizer is fabricated by piling plate-type electrodes up to minimize and reduce install space. Hereby ozone generation characteristics of piled plate-type ozonizer were investigated. Inverse-polarity voltage was generated by H.V neon transformer. And 2 H.V neon transformers were used to supply high voltage each 9 electrodes of plate-type ozonizer. According to the experiments, ozone concentration, generation and yield were proportionally increased tilth increasing the number of electrode. And the maximum increase effects of 246%, 245%, and 33% were obtained when the number of electrode were increased from 3 up to 9.

  • PDF

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Journal of Audiology & Otology
    • /
    • v.23 no.3
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

Effect of Cochlear Implant Electrode Array Design on Electrophysiological and Psychophysical Measures: Lateral Wall versus Perimodiolar Types

  • Lee, Ji Young;Hong, Sung Hwa;Moon, Il Joon;Kim, Eun Yeon;Baek, Eunjoo;Seol, Hye Yoon;Kang, Sihyung
    • Korean Journal of Audiology
    • /
    • v.23 no.3
    • /
    • pp.145-152
    • /
    • 2019
  • Background and Objectives: The present study aims to investigate whether the cochlear implant electrode array design affects the electrophysiological and psychophysical measures. Subjects and Methods: Eighty five ears were used as data in this retrospective study. They were divided into two groups by the electrode array design: lateral wall type (LW) and perimodiolar type (PM). The electrode site was divided into three regions (basal, medial, apical). The evoked compound action potential (ECAP) threshold, T level, C level, dynamic range (DR), and aided air conduction threshold were measured. Results: The ECAP threshold was lower for the PM than for the LW, and decreased as the electrode site was closer to the apical region. The T level was lower for the PM than for the LW, and was lower on the apical region than on the other regions. The C level on the basal region was lower for the PM than for the LW whereas the C level was lower on the apical region than on the other regions. The DRs on the apical region was greater for the PM than for the LW whereas the DR was narrower on the apical region than on the other regions. The aided air conduction threshold was not different for the electrode design and frequency. Conclusions: The current study would support the advantages of the PM over the LW in that the PM had the lower current level and greater DR, which could result in more localized neural stimulation and reduced power consumption.

Electrical Characteristics of 3rd Overtone Mode Energy-trapped High Frequency Filter using PbTiO3 System Ceramics (PbTiO3계 세라믹스를 이용한 3차 진동모드 에너지 트랩형 고주파필터의 전기적 특성)

  • 오동언;류주현;윤현상;박창엽;이수호;김종선;정회승
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.593-598
    • /
    • 2003
  • In this paper, 3rd overtone mode energy-trapped filter using modified PbTiO$_3$ system ceramics was manufactured to apply for intermediate frequency(IF) SMD type fillet with splitted electrode and gap size. To investigate the effects of splitted electrode and gap size on filter characteristics of 3rd overtone mode energy-trapped filter, ceramic wafers were fabricated by etching splitted rectangular electrode size(b$\times$d) of b=0.4, 0.6, 0.8, 1mm, d=0.3, 0.4, 0.5, 0.6mm and gap size(c) c=0.2, 0.3, 0.4, 0.6mm, respectively. And then, SMD type ceramic filter were fabricated with the size of 3.7$\times$3.1$\textrm{mm}^2$. SMD type ceramic filter with the size of b=0.8mm, d=0.4mm and gap(c)=0.4mm, which showed insertion loss of 2.951dB, 3dB bandwidth of 54.7kHz and 20dB stop bandwidth of 129.27kHz, was suitable for IF bandpass filter application.

Real-time Evolution of Poly (3-hexylthiophene) type-II Phase in P3HT:PCBM Blend thin films

  • Lee, Hyeon-Hwi;Lee, Si-U;Geum, Hui-Seong;Kim, Han-Seong;Kim, Je-Han;Lee, Dong-Ryeol;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.168.2-168.2
    • /
    • 2015
  • We observed the temperature-dependent evolution and behavior of P3HT type-II phase during a real time annealing process from a cryo-cooled low temperature in the absence and presence of an Al electrode. A poly (3-hexylthiophene) (P3HT) Type-II phase in the P3HT:PCBM films started to form near at $-10^{\circ}C$, regardless of Al layer presence. In the absence of an Al layer, type-II phase was extinct at $30^{\circ}C$. However, the extinction temperature was extended to $50^{\circ}C$ in the presence of the Al layer. Simultaneously, combined with the type-II phase, a 1:3 ordered P3HT type-II (1/3,0,0) super-lattice peak evolved. These type-II domains tended to be formed near the Al electrode layer with higher aligned status than host P3HT crystals.

  • PDF

Fabrication of Micro Electrodes for Electrochemical Machining (전해 가공을 위한 미세 전극 제작)

  • Kim B. H.;Park B. J.;Chu C. N.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.407-412
    • /
    • 2005
  • For micro electrochemical machining (ECM), tool electrodes with various sizes and shapes are necessary. In this paper, tool electrodes were fabricated by micro electrical discharge machining (EDM). Electrode material is tungsten carbide which has high rigidity and good conductivity for micro electrochemical machining. Disk-type and sphere-type electrodes were fabricated to prevent taper shape of side walls or to produce spherical features. Various 3D micro structures were fabricated by electrochemical milling with developed electrodes.

  • PDF

A Study on the Luminance and Luminous Efficiency Improvement of AC PDP by an Improved Fence Structure Electrode (개량된 Fence전극 구조에 의한 AC PDP의 휘도 및 효율 개선에 관한 연구)

  • Hur, Min-Nyung;Lee, Sung-Hyun;Yu, Chung-Hui;Shin, Jung-Hong;Park, Jung-Hoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.531-535
    • /
    • 2002
  • Nowadays, the most serious problems in ac PDP are high cost and complex manufacturing processes. To solve these problems, fence electrode structure, which eliminates the need for expensive transparent electrodes, has been newly suggested. But it has a lower luminance and luminous efficiency than the conventional stripe type electrode structure. In this study, an improved fence electrode structure has been suggested in order to improve luminance and luminous efficiency. The experimental results show that the luminous efficiency of suggested structure is 25% higher than that of conventional fence electrodes.

Effect of Firing Temperature on Microstructure and the Electrical Properties of a ZnO-based Multilayered Chip Type Varistor(MLV) (소성온도에 따른 ZnO계 적층형 칩 바리스터의 미세구조와 전기적 특성의 변화)

  • Kim, Chul-Hong;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.286-293
    • /
    • 2002
  • Microstructure and the electrical porperties of a ZnO-based multilayered chip-type varistor(abbreviated as MLV) with Ag/Pd(7:3) inner electrode have been studied as a function of firing of temperature. At 1100$^{\circ}$C, inner electrode layers began to show nonuniform thickness and small voids, which resulted in significant disappearance of the electrode pattern and delamination at 1100$^{\circ}$C. MLVs fired at 950$^{\circ}$C showed large degradation in leakage current, probably due to incomplete redistribution of liquid and transition metal elements in pyrochlore phase decomposition. Those fired at 1100$^{\circ}$C and above, on the other hand, revealed poor varistor characteristics and their reproductibility, which are though to stem from the deformation of inner electrode pattern, the reaction between electrode materials and ZnO-based ceramics, and the volatilization of $Bi_2O_3$. Throughout the firing temperature range of 950∼1100$^{\circ}$C, capacitance and leakage current increased while breakdown voltage and peak current decreased with the increase of firing temperature, but nonlinear coefficient and clamping ratio kept almost constant at ∼30 and 1.4, respectively. In particular, those fired between 1000$^{\circ}$C and 1050$^{\circ}$C showed stable varistor characteristics with high reproducibility. It seems that Ag/Pd(7:3) alloy is one of the electrode materials applicable to most ZnO-based MLVs incorporating with $Bi_2O_3$ when cofired up to 1050$^{\circ}$C.