• Title/Summary/Keyword: C-strain

Search Result 5,763, Processing Time 0.03 seconds

Studies on Takjoo Yeasts (Part II) -Influences of Kind of Yeast Strains and Brewing Conditions of Fermentation of Takjoo Mash- (탁주효모(濁酒酵母)에 관(關)한 연구(硏究) (제2보(第2報)) -탁주료의 발효(醱酵)에 미치는 효모(酵母)의 종류(種類)와 담금 조건(條件)의 영향(影響)-)

  • Park, Yoon-Joong;Lee, Suk-Kun;Oh, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.16 no.2
    • /
    • pp.85-93
    • /
    • 1973
  • These experiments were carried out to study influences of the kind of yeasts and of brewing condition on fermentation of Takjoo mash. The results obtained were as follows: 1. Kind of yeasts and the number of yeasts in mash. When the first stage mash was fermented at $20^{\circ}C$ for $1.5{\sim}2.5$ days and at $25^{\circ}C$, $30^{\circ}C$ for $1{\sim}2days$, in the second stage mash that was fermented at high temperature, the number of yeasts was less as compared with the case of fermentation at low temperature, but the living yeasts number of Takjoo yeast strain Dm-1 was more than those of sake yeast, strain No. 7. 2. Kind of yeasts and composition of ripened mash. 1) In the secondstage mash that was fermented at high temperature($30{\sim}35^{\circ}C$), alcohol percentage of ripened mash using the selected Takjoo yeasts (strains: Dm-1, Y-1) was remarkably higher than the case of another yeasts (strains: No.7, No.6, No. 396, No. 1). 2) Acidity of mash had a little differences between strain Dm-1 and strain No. 7. 3) In the second stage mash that was fermented at high temperature ($30{\sim}35^{\circ}C$), the amount of Formol-N using strain Dm-1 was remarkably less than strain No.7. 3. Brewing condition and alcohol percentage of mash. 1) The fit amount of wheat bran Kuk addition per material was 3 percentage and it was adequate to use the mixture of wheat flour Kuk 20 percentage and wheat bran Kuk 1-2 percentage. 2) Though brewing concentration of the first stage mash was duiluted by twice of general brewing concentration, the yeast reproduction was normal. 3) In addition of wheat flour $80{\sim}140g$ per 180ml water, alcohol percentage of the mash increased almost propotionally according to the increase of the amount of wheat flour. 4) It was recognized that three stage brewing was superior in method to two stage brewing at present.

  • PDF

Effect of Temperatures on the Growth of Susceptible and Malathion Resistant Green Peach Aphid Strains (Malathion 저항성 및 감수성 복숭아혹진딧물의 온도에 따른 발육특성)

  • Seung Seok Song;Naoki MOTOYAMA
    • Korean journal of applied entomology
    • /
    • v.35 no.4
    • /
    • pp.297-301
    • /
    • 1996
  • This test has been carried out to evaluate the effect of temperature on the growth of the insecticide susceptible strain, URY-O nomal genotype and insecticide resistant strain, O-RT abnormal genotype, and ABURABI nomal genotype. The nymphal periods were not significantly different between URY-O and O-RY strains at $25^{\circ}C$. At $30^{\circ}C$, susceptible strain URY-O could give birth to offsprings almost nomally, while resistant strain O-RY could not produce any offspring for 20 days which results in nymphal death. The numbers of offsprings of strain URY-O and strain ABURABI were not different between $25^{\circ}C\;and\;28^{\circ}C$, but strain O-RY, when it was reared at $28^{\circ}C$, could produce offsprings only 10% of those at $25^{\circ}C$. Body weight of strain URY-O and strain ABURABI were 0.22mg/female and 0.27mg/female, respectively at $28^{\circ}C$, however that of O-RY was only 0.16mg/female, showing considerable difference between normal and abnormal genotype. Substrain O-RY(+) which has high esterase activity showed poor reproduction ability(0.8 progenies per $G_{1}$ individual than substrain O-RY(-) (3.4 progenies per $G_{1}$ individual) which has low esterase activity at $28^{\circ}C$

  • PDF

Differentiation of Colletotrichum spp. Causing Anthracnose on Capsicum annum L. by Electrophoretic Method (전기영동법을 이용한 고추탄저병균의 분류)

  • Park Won Mok;Park Sang Ho;Lee Yong Se;Ko Young Hee;Cho Eui Kyoo
    • Korean Journal Plant Pathology
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 1987
  • The present researches were carried out to differentiate the species of Colletotrichum by elecrophoretic method. C. gloeosporioides, C. dematium and Gloeosporium fructigenum could be differentiated by the isozyme patterns of esterase, leucine aminopeptidase, acid phosphatase and glutamic oxaloacetic transaminase. Especially. G-strain and R-strain of C. gloeosporioides were differentiated by the enzyme patterns. The G­strain damaged all stage fruits (green and red fruits) of Capsicum annum. The R-strain could not infect the unripe (green) fruits, but it could damage only ripe (red) fruit of Capsicum annum.

  • PDF

Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617

  • Ekaputra, I.M.W.;Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1387-1395
    • /
    • 2016
  • To investigate the dynamic strain aging (DSA) behavior of Alloy 617, high-temperature tensile tests were carried out with strain rates variations of $10^{-3}/s$, $10^{-4}/s$, and $10^{-5}/s$ from $24^{\circ}C$ to $950^{\circ}C$. Five flow relationships, Hollomon, Ludwik, Swift, Ludwigson, and Voce, were applied to describe the tensile true stress-strain curves, and the DSA region was defined. In describing the tensile curves, Ludwigson's equation was superior to the other equations, and the DSA region was adequately defined by this equation as plateaus at intermediate temperatures from $200^{\circ}C$ to $700^{\circ}C$. It was identified that Alloy 617 is dominated by three types of serrations, known as Types D, A+B, and C. The activation energy values for each serration type were obtained by the Arrhenius equation. By using the obtained activation energy values, the serrated yielding map and the DSA mechanism were drawn and manifested. In addition, the relationship between the tensile strength and strain rate at higher temperatures above $700^{\circ}C$ was found to be closely related to the amounts of slip lines. In the scanning electron microscope (SEM) fractographs, there was a significant difference at the low, intermediate, and high temperatures, but almost the same to the three strain rates.

Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel (304 스테인리스강의 300℃에서 저주기 피로수명 증가)

  • Kim, Dae Whan;Han, Chang Hee;Lee, Bong Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA1050 Al Sheet (열간 비대칭 압연한 AA1050 Al 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.287-293
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep drawability of the Al sheet. This study investigated the increase in the plastic strain ratio and the texture change of AA1050 Al sheet after the hot asymmetric rolling. The average plastic strain ratio of initial AA1050 Al sheets was 0.41. After 84% hot asymmetric rolling at $400^{\circ}C$, the average plastic strain ratio was 0.77. The average plastic strain ratio of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1.9 times higher than that of initial AA1050 Al sheet. The ${\mid}{\Delta}R{\mid}$ of 84% hot asymmetrically rolled AA1050 Al sheet at $400^{\circ}C$ is 1/2 times lower than that of initial AA1050 Al sheet. This result is due to the development of the intensity of the ${\gamma}-fiber$ texture and the decrease of the intensity of {001}<100> texture after the hot asymmetric rolling of AA1050 Al sheet.

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA3003 Sheet (열간 비대칭 압연한 AA3003 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.281-286
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep draw ability of the Al sheet. This study investigated the increase of the plastic strain ratio and the texture change of AA3003 sheet after the hot asymmetric rolling. The average plastic strain ratio of the initial AA3003 sheets was 0.69. After 83% hot asymmetric rolling at $200^{\circ}C$, the average plastic strain ratio was 0.83. The average plastic strain ratio of the 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 1.2 times higher than that of the initial AA3003 sheet. The ${\mid}{\Delta}R{\mid}$ of 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 0.83 times lower than that of the initial AA3003 sheet. This result is due to the development of the intensity of ${\gamma}-fiber$ texture and reduces the intensity of {001}<110> and {001}<100> textures after hot asymmetric rolling of AA3003 sheet.

Strain Ageing in Zircaloy-4

  • Rheem, Karp-Soon;Park, Won-Koo
    • Nuclear Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.19-27
    • /
    • 1976
  • The strain ageing behaviour of Zircaloy-4 has been studied in the temperature range 175$^{\circ}C$ to 575$^{\circ}C$ for both quenched and annealed specimens. The strain ageing in quenched Zircaloy-4 was found in the temperature range 175$^{\circ}C$ to 50$0^{\circ}C$ and its Peak occured at 3$25^{\circ}C$ while the strain ageing in annealed specimens occured in the temperature range 175-575$^{\circ}C$, showing two peaks, one at 323$^{\circ}C$ and a higher one at 45$0^{\circ}C$. The peak at 3$25^{\circ}C$ in both quenched and annealed specimens is considered to be due to the segregation of interstitial oxygen atoms to cell walls during ageing. The peak at 45$0^{\circ}C$ in annealed specimens is considered to he due to the interaction of dislocations with Fe atoms. It has been found that strain ageing stress at ~30$0^{\circ}C$ in zirconium alloys is proportional to the square root of oxygen content.

  • PDF

Bending Strain Dependence of the Critical Current in Externally-reinforced Bi-2223 Tapes with Different Hermeticity under pressurized Liquid Nitrogen (외부보강된 밀봉 상태가 다른 Bi-2223테이프의 가압 LN2하에서 임계전류의 굽힘변형률 의존성)

  • Shin, Hyung-Seop;Dizon, John Ryan C;Park, Jeong-Soo;Rolley, Bonifacio
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.541-545
    • /
    • 2007
  • The critical current degradation behaviors of multifilamentary Bi-2223 superconducting tapes under pressurized liquid nitrogen were investigated using a r-shaped sample holder which gives a series of bending strains to tape. Three kinds of externally-reinforced Bi-2223 tapes with different hermeticity were used as samples. The tape with the thicker reinforcement layer had a better bending strain tolerance of $I_c$, but when the bending strain was calculated at the outermost filament, the $I_c$ degradation behavior became identical. For all samples, $I_{c0}$ decreased with the increase of applied pressure, but the $I_c$ degradation behavior with bending strain at each pressure level was similar. Furthermore, after depressurization from 1 MPa to atmospheric pressure, $I_c$ was completely recovered to its initial values. When the samples were warmed up to room temperature after pressurization tests, the ballooning damage occurred at lower bending strain regions. The region where ballooning was observed was identical to the one where the significant $I_c$ degradation occurred.

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.