• 제목/요약/키워드: C-glycosides

검색결과 184건 처리시간 0.029초

유익하게 인체에 작용하는 균(유인균)을 이용한 인삼발효식초 제조과정에 대한 특성연구 (A Study on the Vinegar Fermentation Processes of Fresh Korean Ginseng Extract Using Mix Microbial Yinkin)

  • 황세란;데스티아니 수페노;권순홍;정성원;권순구;박종민;김종순;최원식
    • 한국산업융합학회 논문집
    • /
    • 제20권4호
    • /
    • pp.345-350
    • /
    • 2017
  • Saponin is the most pharmaceutical active ingredients of the ginseng plant, it was called "Ginsenoside" which means the Glycoside of ginseng that composed glycosides and aglycones. The human body will absorb the saponin easily if these substrate was decomposed by active microorganism. Fermentation is the most convenient technique to decompose this active ingredients. The purpose of this research was to study the sugar content, pH and acidity development during the ginseng fermentation process. Fresh Korean ginseng and red ginseng extract was used as the main ingredient. The concentrated of pure ginseng extract was added to increase the saponin extract. Furthermore, the mix microbial powder was added as starter to increase the fermentation efficiency. The ginseng was fermented in fermentation chamber at temperature $37^{\circ}C$ during 70 days. In the end of experiment the sugar content was decreased from 24% to 7.65%, The pH was decreased from 6.5 to 3.4, and the acidity level was incresed from 0% to 1.2%.

초음파 처리에 의한 인삼 잎과 줄기의 진세노사이드 성분 변화 (Changes in Ginsenosides Composition of Ginseng Leaf and Stem after an Ultrasonication Process)

  • 남윤민;신호준;양병욱;박종대;조순현;김형춘;고성권
    • 생약학회지
    • /
    • 제47권4호
    • /
    • pp.352-359
    • /
    • 2016
  • The purpose of this study is to develop a new preparation process of ginseng leaf and stem extracts having high concentrations of ginsenoside Rg2, Rg3, Rg5, Rh1, a special component of red and black ginseng. Chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by the HPLC. Extracts of ginseng (Panax ginseng) leaf and stem were processed under several treatment conditions including ultrasonication treatments. The content of total saponin reached their heights at 17 hr (UGL-17) of ultrasonication treatment, followed by 16 hr (UGL-16) and 7 hr (UGL-7) of ultrasonication treatment at $100^{\circ}C$. UGL-17 findings show that the ginseng leaf and stem that had been processed with ultrasonication for 17 hours peaked in the level of Rg2, Rg3 and Rh1. In addition, UGL-16 contained ginsenoside Rg5 at high concentrations. It is thought that such results provide basic information in preparing ginseng leaf and stem extracts with functionality enhanced.

Isolation, Identification, and Characterization of Pichia guilliermondii K123-1 and Candida fermentati SI, Producing Isoflavone β-Glycosidase to Hydrolyze Isoflavone Glycoside Efficiently, from the Korean Traditional Soybean Paste

  • Kim, Won-Chan;So, Jai-Hyun;Kim, Sang-In;Shin, Jae-Ho;Song, Kyung-Sik;Yu, Choon-Bal;Kho, Yung-Hee;Rhee, In-Koo
    • Journal of Applied Biological Chemistry
    • /
    • 제52권4호
    • /
    • pp.163-169
    • /
    • 2009
  • A total of 155 microbial strains were isolated from the Korean traditional soybean paste based on their morphological features on the growth of agar plate. Among the isolated strains, a total of 28 strains were capable of hydrolyzing isoflavone glycoside to isoflavone aglycone efficiently in the soybean paste. Finally, two strains, K123-1 and SI, were selected because of their resistance to 15% NaCl and ability to convert isoflavone glycoside to isoflavone aglycone efficiently during the fermentation of soybean paste. The isolated strains K123-1 and SI were identified to be Pichia guilliermondii and Candida fermentati, respectively, using the partial 26S rDNA sequence analysis and phylogenic analysis. Pichia guilliermondii K123-1 and Candida fermentati SI converted daidzin to daidzein up to 96% and 95%, respectively, and genistin to genistein up to 92% when soybean pastes were fermented at $30^{\circ}C$ for 20 days with a single isolated strain. Pichia guilliermondii K123-1 and Candida fermentati SI were able to grow in the presence of 15% NaCl on both liquid medium and agar plate. We think that Pichia guilliermondii K123-1 and Candida fermentati SI might be one of good candidates for making functional soybean paste because they are isolated from the Korean traditional soybean paste and have a good ability to convert isoflavone glycosides to isoflavone aglycones and a high salt tolerance.

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat $N$-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

  • Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Zukin, R. Suzanne;Rhim, Hye-Whon;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.113-118
    • /
    • 2012
  • Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of $N$-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current ($I_{NMDA}$) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited $I_{NMDA}$ in a concentration-dependent manner. The $IC_{50}$ for PPT on $I_{NMDA}$ was $48.1{\pm}4.6\;{\mu}M$, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on $I_{NMDA}$ could be related to ginseng-mediated neuroprotection.

Ginsenoside Rg2 Inhibits Lipopolysaccharide-Induced Adhesion Molecule Expression in Human Umbilical Vein Endothelial Cell

  • Cho, Young-Suk;Kim, Chan Hyung;Ha, Tae-Sun;Lee, Sang Jin;Ahn, Hee Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권2호
    • /
    • pp.133-137
    • /
    • 2013
  • Vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P- and E-selectin play a pivotal role for initiation of atherosclerosis. Ginsenoside, a class of steroid glycosides, is abundant in Panax ginseng root, which has been used for prevention of illness in Korea. In this study, we investigated the mechanism(s) by which ginsenoside Rg2 may inhibit VCAM-1 and ICAM-1 expressions stimulated with lipopolysaccharide (LPS) in human umbilical vein endothelial cell (HUVEC). LPS increased VCAM-1 and ICAM-1 expression. Ginsenoside Rg2 prevented LPS-mediated increase of VCAM-1 and ICAM-1 expression. On the other hand, JSH, a nuclear factor kappa B (NF-${\kappa}B$) inhibitor, reduced both VCAM-1 and ICAM-1 expression stimulated with LPS. SB202190, inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), and wortmannin, phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, reduced LPS-mediated VCAM-1 but not ICAM-1 expression. PD98059, inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) did not affect VCAM-1 and ICAM-1 expression stimulated with LPS. SP600125, inhibitor of c-Jun N-terminal kinase (JNK), reduced LPS-mediated ICAM-1 but not VCAM-1 expression. LPS reduced IkappaB${\alpha}$ ($I{\kappa}B{\alpha}$) expression, in a time-dependent manner within 1 hr. Ginsenoside Rg2 prevented the decrease of $I{\kappa}B{\alpha}$ expression stimulated with LPS. Moreover, ginsenoside Rg2 reduced LPS-mediated THP-1 monocyte adhesion to HUVEC, in a concentration-dependent manner. These data provide a novel mechanism where the ginsenoside Rg2 may provide direct vascular benefits with inhibition of leukocyte adhesion into vascular wall thereby providing protection against vascular inflammatory disease.

Bioactive Constituents from the n-Butanolic Fraction of Aruncus dioicus var. kamtschaticus

  • Vo, Quoc Hung;Nguyen, Phi Hung;Zhao, Bing Tian;Thi, Yen Nguyen;Nguyen, Duc Hung;Kim, Won Il;Seo, U Min;Min, Byung Sun;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • 제20권4호
    • /
    • pp.274-280
    • /
    • 2014
  • Six compounds were isolated from the n-BuOH fraction of the aerial parts of Aruncus dioicus var. kamtschaticus including: sambunigrin (1), prunasin (2), aruncide A (3), aruncide C (4), 1-O-caffeoyl-${\beta}$-D-glucopyranose (5), and caffeic acid (6). Their structures were confirmed by comparing the spectral data with those reported in the literature. The isolated compounds (1 - 6) were then examined for their cytotoxic effects towards MCF-7, HL-60, and HeLa cancer cell lines, as well as their DPPH radical scavenging activity. The results indicated that compound 4 possessed the strongest inhibitory effect toward HeLa cell line with $IC_{50}$ value of $5.38{\pm}0.92{\mu}M$. Compound 3 possessed selective cytotoxic activity on HL-60 cells with $IC_{50}$ value of $6.27{\pm}0.17{\mu}M$, compound 5 was found as the best in inhibiting proliferation with $IC_{50}$ value of $2.25{\pm}0.09{\mu}M$, and the other compounds showed significant inhibition with $IC_{50}$ values ranging from 6.10 to $11.27{\mu}M$. Compound 5 also displayed the strongest cytotoxic effect toward MCF-7 cell line ($IC_{50}$ $4.32{\pm}0.15{\mu}M$). Both 5 and 6 demonstrated strong radical scavenging activity ($IC_{50}$ $6.87{\pm}0.03$ and $4.33{\pm}0.22{\mu}M$, respectively). Compounds 1 and 5 were isolated for the first time from this plant.

율무, 보리, 미강 유기용매 추출물의 항산화능과 포도당 및 지방산 대사에 미치는 영향 (Extracts of Adlay, Barley and Rice Bran have Antioxidant Activity and Modulate Fatty Acid Metabolism in Adipocytes)

  • 박태식;이수연;김현진;김경탁;김영준;정인혜;도완녀;이혜정
    • 한국식품영양학회지
    • /
    • 제22권3호
    • /
    • pp.456-462
    • /
    • 2009
  • Adlay, barley and rice bran were extracted using various concentrations of methanol(10% and 80%) and chloroform : methanol(2 : 1) to examine the biological activities of these raw grains. Extraction with 80% methanol resulted in high Vitamin C Equivalent Antioxidant Capacity(VCEAC), in the order of barley > rice bran > adlay, as determined by DPPH and ABTS assays. In addition, the extracts of adlay and rice bran showed high cellular antioxidant activity in HepG2 cells possibly due to the presence of polyphenol glycosides in these grains. We examined the expression of glucose/fatty acid metabolizing genes in differentiated 3T3-L1 adipocyte cells. Glut1 was downregulated after treatment with rice bran and no changes in the expression of Glut4 was observed. In contrast, genes involved in fatty acid metabolism, CD36 and aP2, were upregulated. Since these physiological changes were matched with peroxisome proliferator activating receptor $\gamma$(PPAR $\gamma$) agonism, we suggest that the extracts from adlay, barley and rice bran may play preventive roles against aging and diabetes via antioxidant activity and increased uptake of fatty acids by adipocytes.

Preliminary pharmacognostical and phytochemical evaluation of Stachys tibetica Vatke

  • Kumar, Dinesh;Bhat, Zulfiqar Ali;Kumar, Vijender;Chashoo, Ishtaq Ahmad;Khan, Nisar Ahmad;Ara, Irfat;Shah, Mohammad Yassin
    • 셀메드
    • /
    • 제2권1호
    • /
    • pp.11.1-11.7
    • /
    • 2012
  • Stachys tibetica Vatke (Lamiaceae) is an important medicinal plant in the folk medicine of Ladakh, India and Tibet for the treatment of various mental disorders. Infusion and decoction of the whole plant is used as a cup of tea for a severe fever, headaches and to relieve tension. The recent study is aimed to evaluate the preliminary pharmacognostical and phytochemical nature of Stachys tibetica Vatke. The whole plant material was subjected to successive soxhlet extraction with petroleum ether (40 - $60^{\circ}C$), chloroform, ethyl acetate, methanol and finally decocted with water to get the respective extracts. The fluorescence characteristics of the powdered materials were analysed under ultraviolet light and ordinary light. Different physicochemical parameters such as ash value, extractive value, foaming index, pH values, loss on drying and determination of foreign matter were carried out as per WHO guidelines. The total fat, flavonoid, saponin and volatile contents were also determined. Macroscopical studies revealed the authentication of the plant drug. Physicochemical parameters helped to standardize the plant material while preliminary qualitative chemical tests of different extracts showed the presence of Glycosides, Carbohydrates, Phytosterols/triterpenoids, Saponins, Fixed oils, Fats and phenols/tannins. Quantification of the total flavonoids and saponins and contents were determined as $54.66{\pm}0.58mg/g$ and $75.42{\pm}0.48mg/kg$ respectively, while the volatile and fat contents were 6.5% and 0.7% respectively. Results may lay the foundation for the standardization of the drug and discovery of new molecules from S. tibetica for the treatment of various diseases.

약콩, 비트 추출물의 자외선에 의한 망막 상피세포와 마우스의 눈 손상 조절 효능 (Rhynchosia volubilis Lour. and Beta vulgaris Modulate Extracts Regulate UV-Induced Retinal Pigment Epithelial Cell and Eye Damage in Mice)

  • 김하림;김솔;김상준;정승일;김선영
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.131-138
    • /
    • 2020
  • Ultraviolet (UV)-induced damage plays a major role in ocular diseases, such as cataracts and retinal degeneration. UV irradiation can generate free radicals including reactive oxygen species (ROS), which are known to cause lipid peroxidation of cellular membranes. It has also been shown that UV can damage DNA directly and induce apoptosis. Rhynchosia volubilis Loureiro (the small black bean or yak-kong, RV) and Beta bulgaris (beet, BB) are used as health supplements. In this study, we explored the protective effects of RV and BB against UVA-induced damage in human pigment epithelial (ARPE-19) cells and in mice. RV and BB mixture and their effective constituents (cyanidin, delphidin, petunidin glycosides) improved cell viability and suppressed intracelluar ROS generation. Phosphorylation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), Erk1/2 was analyzed by immunoblotting. RV and BB mixture inhibited UVA-induced phosphorylation of p38 MAPK, JNK, Erk1/2 in APRE-19 cells. RV and BB treatment also showed protective effects on ocular damage in UVA-irradiated mice by increasing the levels of endogenous antioxidants such as superoxide dismutase and glutathione. RV and BB have the potential to be used in a range of ocular diseases and conditions, based on in vitro and in vivo study.

산층층이꽃 추출물로부터 성분 분리 및 암세포성장 및 NO 생성 억제활성 (Isolation of the Constituents from Clinopodium chinense var. shibetchense and Inhibition Activity on Cancer Cell Growth and Nitric Oxide Production)

  • 김동화;이상국;박경식;박희준
    • 생약학회지
    • /
    • 제51권2호
    • /
    • pp.93-99
    • /
    • 2020
  • This study was performed to find anti-inflammatory or antitumor compounds from the polar fraction obtained from the extract of Clinopodium chinense var. shibetchense (H. Lev) Koidz (Labiatae). Chromatography of the BuOH fraction yielded two flavonoid glycosides (compounds 1 and 2) and two saponins (compounds 3 and 4). On the basis of spectroscopic data, compounds 1 and 2 were identified to be ponciretin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (neoponcirin) and naringenin 7-O-α-L-rhamnopyranosyl-(1→6)-α-D-glucopyranoside (isonaringin). Compounds 3 and 4 were identified to be 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-saikogenin F (buddlejasaponin IV) and 3-O-{β-D-glucopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-fucopyranosyl}-21β-hydroxysaikogenin F (clinoposaponin XV). In addition, ursolic acid (5) was isolated and identified from the CHCl3 fraction. Inducible nitric oxide synthase (iNOS) assay and sulforhodamine B (SRB) assay were performed to lead a potential anti-inflammatory or anti-tumor compounds from C. chinense var. shibetchense. Of the four compounds (1 - 4), compound 3 considerably inhibited cancer cell growth and NO production (IC50s, 5.59 μM in iNOS assay and 6.62 - 14.88 μM in SRB assay).