Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.2.131

Rhynchosia volubilis Lour. and Beta vulgaris Modulate Extracts Regulate UV-Induced Retinal Pigment Epithelial Cell and Eye Damage in Mice  

Kim, Ha Rim (Jeonju AgroBio-materials Institute)
Kim, Sol (Jeonju AgroBio-materials Institute)
Kim, Sang-Jun (Jeonju AgroBio-materials Institute)
Jeong, Seung-Il (Jeonju AgroBio-materials Institute)
Kim, Seon-Young (Jeonju AgroBio-materials Institute)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.2, 2020 , pp. 131-138 More about this Journal
Abstract
Ultraviolet (UV)-induced damage plays a major role in ocular diseases, such as cataracts and retinal degeneration. UV irradiation can generate free radicals including reactive oxygen species (ROS), which are known to cause lipid peroxidation of cellular membranes. It has also been shown that UV can damage DNA directly and induce apoptosis. Rhynchosia volubilis Loureiro (the small black bean or yak-kong, RV) and Beta bulgaris (beet, BB) are used as health supplements. In this study, we explored the protective effects of RV and BB against UVA-induced damage in human pigment epithelial (ARPE-19) cells and in mice. RV and BB mixture and their effective constituents (cyanidin, delphidin, petunidin glycosides) improved cell viability and suppressed intracelluar ROS generation. Phosphorylation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), Erk1/2 was analyzed by immunoblotting. RV and BB mixture inhibited UVA-induced phosphorylation of p38 MAPK, JNK, Erk1/2 in APRE-19 cells. RV and BB treatment also showed protective effects on ocular damage in UVA-irradiated mice by increasing the levels of endogenous antioxidants such as superoxide dismutase and glutathione. RV and BB have the potential to be used in a range of ocular diseases and conditions, based on in vitro and in vivo study.
Keywords
Rhynchosia volubilis Lour.; Beta bulgaris; Retinal degeneration; Reactive oxygen species;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Cho, E. H., Shin, D., Cho, K. H. and Hur, J. (2018) Prevalences and management of diabetes and pre-diabetes among korean teenagers and young adults results from the Korea National Health and Nutrition Examination Survey 2005-2014. J. Korean Med. Sci. 32: 1984-1990.   DOI
2 Brown, M. R. and Turner, A. W. (2020) 9-Ophthalmologic diseases. Hunter's tropical medicine & emerging infectious diseases (10th ed.). 78-85.
3 Ottonello, S., Foroni, C., Carta, A., Petrucco, S. and Maraini, G. (2000) Oxidative stress and age-related caract. Opthalmologica 214: 78-85.   DOI
4 Ahmad, A. and Ahsan, H. (2020) Biomarkers of inflammation and oxidative stress in opthalmic disorders. J. Immunoassay Immunochem. 41: 257-271.   DOI
5 Varma, S. D., Kovtun, S. and Hegde, K. R. (2011) Role of UV irradiation and oxidative stress in cataract formation. Medical prevention by nutritional antioxidants and metabolic agonists. Eye. Contract Lens 37: 233-245.   DOI
6 Marie, M., Bigot, K., Angebault, C., Barrau, C., Gondouin, P., Pagan, D., Fouquet, S., Villette, T., Sahel, J-A., Lenaers, G. and Picaud, S. (2018) Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell Death Dis. 9: 287-299.   DOI
7 Zhu, C., Dong, Y., Liu, H., Ren, H. and Cui, Z. (2017) Hesperidin protects against $H_2O_2$-triggered oxidative damage via upregualtion of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells. Biomed. Pharmacother. 88: 124-133.   DOI
8 Bodley, B. F., Shamsi, F. A., Liang, F.-Q., Davies, S. D. and Boulton, M. (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Biol. Chem. 280: 21061-21066.   DOI
9 Roduit, R. and Schorderet, D. F. (2008) MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis 13: 343-353.   DOI
10 Silvan, J. M., Reguero, M. and de Pascual-Teresa, S. (2016) A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food & Feunct. 7: 1067-1076.   DOI
11 Paik, S. S., Jeong, E., Jung, S. W., Ha, T. J., Kang, S., Sim, S., Jeon, J. H., Chun, M. H. and Kim, I. B. (2012) Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. Exp. Eye. Res. 97: 55-62.   DOI
12 Carmen, J. C. Hardi, L. and Sinai, A. P. (2006) Toxoplasma gondii inhibits ultraviolet light-induced apoptosis through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Cell Microbiol. 8: 301-315.   DOI
13 Song, Y., Yu, G.P., Dou, C.R., Wu, H and Gong, Z. (2013) Anti-oxidant activity of anthocyanins of black soybean in vitro. Adv. Mater. Res. Switz. 634-638, 1423-1428.   DOI
14 Hwang, J.-H., Ahn, C. W., Kim, H. J., Lee, K. A., Park, O. J. and Kwon, D. Y. (2011) Black soybean peptide mixture purified from Rhynchosia volubilis exerts antioxidant activity against $H_2O_2$-induced cytotoxicity and improves thrombosis. J. Med. Plants Res. 5: 6477-6483.
15 Kaunppinen, A., Niskanen, H., Suuronen, Y., Salminen, A. and Kaarniranta, K. (2012) Oxidative stress activates NLRP3 inflmmasomes in ARPE-19 cells-Implications for age-related macular degeneration (AMD). Immunol. Lett. 147: 29-33.   DOI
16 Ninfali, P., Antonini E., Frati, A. and Scarpa, E.-S. (2017) CGlycosyl flavonoids from beta vulgaris cicla and betalains from beta vulgaris rubra : Antioxidant, anticancer and antiinflammatory activities-A Review. Phytother. Res. 31: 871-884.   DOI
17 Re, R., Pelligrini, N., Proteggente, A., Pannala, A., Yang, M. and RiceEvans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. (1999) Free Radical Bio. Med. 26: 1231-1237.   DOI
18 Blois, M. S. Antioxidant determination by the use of a stable free radical. (1958) Nature 181: 1199-1200.   DOI
19 Kim, S. J., Kim, J. A., Kim, S., Youn, J. U., Kim, S. H., Han, S. S., Kim S. Y. and Jeong, S. I. (2019) Antioxidant and antidiabetic effects of leaves and stems of Acanthopanax siboldianum (Makino) Koidz. Kor. J. Pharmacogn. 50: 141-147.
20 Strauss, O. (2005) The retinal pigment epithelium in visual function Physiol. Rev. 85: 845-881.   DOI
21 Gao, M. L., Huang, N., Wang, Y. Y., Lei, X. L., Xu, Z. Q., Hu, D. N., Cai, J. Q., Lu, F. and Jin Z. B. (2016) Upregulation of $GADD45{\alpha}$ in light-damaged retinal pigment epithelial cells. Cell Death Dis. 2: 16013-16021.   DOI
22 Tong, T., Fan, W., Zhao, H., Jin, S., Fan, F., Blanck, P., Rajasekaran, B., Liu, Y., Holbrook, N. J. and Zhan, Q. (2001) Involvement of the MAP kinase pathways in induction of GADD45 following UV radiation. Exp. Cell Res. 269: 64-72.   DOI