• Title/Summary/Keyword: C-flux

Search Result 1,785, Processing Time 0.027 seconds

Dynamic Characteristics for the Separation of Inulin Solution in Membrane Filtrsition System of Tangential Flow (접선류 막분리 시스템에 의한 이눌린 수용액의 분리 동특성)

  • 허병기;배천순이기정목영일
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 1990
  • Dynamic characteristics of separation in membrane filtration system of tangential flow was investigated to find the functional relationship among the filtrate flux, transmembrane pressure, inulin concentration and recirculation rate. In case that NMWL is 1000, tracts-membrane pressure $0.4kgf/\;{\textrm{cm}^2}$ to $3.2kgf/\;{\textrm{cm}^2}$, inulin concentration lwt% to 5wt%, and recirculation rate 4ml / sec, mathematical model for the function among filtrate flux, transmembrane pressure, and inulin concentration was deduced and expressed as follows.Jv = (0.0022p + 0.0003) ln \frac{3p\;+\;2.1}{C_b}$ The values calculated by the above equation and those measured were compared to find to be nicely in accord with each other. Especially the agreement was enhanced in the region of higher concentration of inulin.

  • PDF

Enhancement of Pool Boiling Heat Transfer Coefficients with the Use of Carbon Nanotubes (탄소나노튜브 사용 풀비등 열전달 촉진)

  • Park Ki-Jung;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.842-849
    • /
    • 2006
  • In this study, the effect of carbon nanotubes (CNTs) on boiling heat transfer is investigated. Three refrigerants of R22, R123, R134a, and water are used as base working fluids and 1% of CNTs by volume is added to the base fluids to study the effect of CNTs. All data are obtained at the pool temperature of $7^{\circ}C$ for all refrigerants and $100^{\circ}C$ for water in the heat flux range of $10{\sim}80\;kW/m^2$. Test results show that CNTs increase the boiling heat transfer coefficients for all fluids. Especially, large enhancement was observed at low heat flutes. With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generations. Fouling was not observed during the course of this study. Optimum quantity and type of CNTs and their dispersion should be examined for their application in pool boiling heat transfer.

Superconductivity for HTS GdBCO CC with heat treatment

  • You, Jong Su;Yang, Jeong Hun;Song, Kyu Jeong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.1
    • /
    • pp.12-16
    • /
    • 2021
  • The magnetic properties of heat treated O-series high temperature superconducting (HTS) GdBCO coated conductor (CC) tapes which were formed of Ag/GdBCO/Buffer-layers/Stainless Steel (SS), were investigated by employing a Quantum Design PPMS-14. Using a modified Bean model, the critical current density Jc values have been estimated from the 𝚫mirr(H) data, which are obtained by measuring the magnetic moment m(H) loops. For a range of intermediate fields, which are interacting or collective flux pinning area, the magnetic flux behaviors were investigated from the relationship Jc ∝ H. In addition, the changes of irreversibility magnetic field Hirr line of heat-treated O-series HTS GdBCO CC tapes were analyzed, according as the annealing temperature under oxygen flowing increases. Both weak and strong break-downs were found by examining the changes of irreversibility magnetic field Hirr lines.

Reaction temperature dependence of MgB2 superconducting bulks using the different sizes of Mg raw powders

  • K.C., Chung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.36-39
    • /
    • 2022
  • Since the MgB2 superconductor is simply composed of two constituents of Mg and B, its performance can be monitored easily with the change of one ingredient compared to the other. With the powder size of B less than 100 nm, two different sizes of Mg powders are used to investigate the reaction temperature dependence of MgB2 bulk samples. In the range of 630-700℃ for the duration of 30 min., the un-reacted Mg is seen only at 630℃ with Mg powder size of <5 ㎛, whereas Mg traces are detected at all the temperature range with Mg powder size of <45 ㎛. The reaction temperature dependence of MgB2 superconducting transition temperature, Tc, shows little difference whether Mg powder size is large or small in this range except for the 630℃. It is worthy of notice that the critical current densities of MgB2 show higher performance with the small size of Mg compared to the large one at all field ranges. With the Mg powder size of <45 ㎛, flux pinning is enhanced with decreasing the reaction temperature, whereas flux pinning properties is quite similar in the Mg powder size of <5 ㎛ except for the 630℃, where Mg is left behind after the reaction.

Formation of $Y_{2}O_{3}$ nanodots on substrate surface using the rf-sputtering method

  • Chang, K.C.;Yoo, J.M.;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.6-8
    • /
    • 2008
  • $Y_{2}O_{3}$ nanodots have been deposited on top of the substrate surface using rf-sputtering method. This approach was adopted to be able to modulate the substrate surface with nanodots used as a seed for the flux pinning sites in the superconducting films. The nanodot density of $Y_{2}O_{3}$ was controlled mainly using the deposition time, rf-power, and substrate temperature. $Y_{2}O_{3}$ nanodots with ${\sim}\;50\;nm$ in diameter and ${\sim}\;3\;nm$ in height were obtained at rf-sputtering time of about 15 seconds using 400 watts of rf-power and $630^{\circ}C$ of substrate temperature. As deposition time increased up to about 30 seconds, the interconnected islands of $Y_{2}O_{3}$ nanodots formed, which can be clearly observed with AFM surface image. The substrate surface was covered entirely with $Y_{2}O_{3}$ layer above the deposition time of 60 seconds. The modulated surface morphologies and cross section analysis of deposited $Y_{2}O_{3}$ nanodots at various experimental conditions have been examined using AFM and discussed with respect to the flux pinning sites for the practical application.

The growth of large KTP crystal and the study of its optical inhomogeneity (대형 KTP 단결정 성장 및 광학적 불균일성에 관한 연구)

  • Han, J.Y.;Lee, S.K.;Ma, D.J.;Kim, Y.H.;Park, S.S.;Lee, S.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.76-82
    • /
    • 1994
  • Single crystals of Potassium Titanyl Phosphate (KTP) were grown from the flux of $K_6P_4O_13(K_6)$ using a high temperatures solution growth method. To grow the large KTP crystal without inclusion, the temperature gradient in furnace, crystal rotation, orientation of seed crystal, and the cooling rate were controled. The KTP crystals are up to $10(a){\times}28(b){\times}33(c)mm^3$ in size. We investigated the optical inhomogeneity in this KTP crystal by the SHG power measurement and TEM analysis.

  • PDF

N2O Emissions from Agricultural Soils and Their Characteristics (밭 토양으로부터 아질산(N2O기체의 배출량 측정과 배출특성)

  • 김득수;오진만
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.529-540
    • /
    • 2003
  • A closed chamber system was used for measuring $N_2$0 fluxes from an agriculturally managed upland soil in Kunsan during the growing season from May to July 2002. It is known that soil is one dominant source of atmospheric $N_2$O, contributing to about 57% (9 Tg y $^{-1}$ ) of the total annual global emission. Hence, its increasing emissions and concentrations are largely associated with agricultural activities. In order to elucidate characteristics of soil nitrogen emissions from intensively managed agricultural soils and to understand the roles of soil parameters (soil moisture, soil pH, soil temperature, and soil nitrogen) in the gas emission, $N_2$O soil emissions were measured at every hour during the experimental period (21 days). Soil $N_2$O fluxes were calculated based on changes of $N_2$O concentrations measured inside a closed chamber at every hour. The analysis of $N_2$O was made by using a Gas Chromatography (equipped with Electron Capture Detector). Soil parameters at sampling plots were also analyzed. Monthly averaged $N_2$O fluxes during May, June, and July were 0.14, 0.05, and 0.13 mg-$N_2$O m$^{-2}$ h$^{-1}$ , respectively. Soil temperature and soil pH did not significantly vary over the experimental period; soil temperatures ranged from 12∼$25^{\circ}C$, and soil pH ranged 4.56∼4.75. However, soil moisture varied significantly from 32% to 56% in WFPS. Relationships between soil parameters and $N_2$O fluxes exhibited positive linear relationships. Strong positive correlation ($R^2$ = 0.57, P< 0.0001) was found between $N_2$O flux and sil moisture. It suggests that soil moisture has affected strongly soil $N_2$O emissions during the experimental periods, while other parameters have remained relatively at constant levels. $N_2$O flux from agricultural soils was significant and should be taken account for the national emission inventory.

Electrotransport of Levodopa through Skin: Permeation at Low pH (전류를 이용한 Levodopa의 경피전달: 낮은 pH에서의 투과)

  • Jo, Jung-Eun;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • In our previous work on levodopa delivery at pH 2.5 using iontophoresis, we found that cathodal delivery showed higher permeation than anodal delivery and electroosmosis plays more dominant role than electrorepulsion. In this work, we studied the transdermal transport of levodopa at very low pH (pH=1.0) where all levodopa molecules are cations, and evaluated some factors which affect the transdermal transport. The transport study at pH 2.5 was also conducted for comparison. The contribution of electrorepulsion and electroosmosis on flux was also evaluated. Using stable aqueous solution, the effect of electrode polarity, current density, current type and drug concentration on transport through skin were studied and the results were compared. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel containing levodopa. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin were used. Current densities applied were 0.2, 0.4 or $0.6\;mA/cm^2$. Contrary to the pH 2.5 result, anodal delivery showed higher flux, indicating that electrorepulsion is the dominant force for the transport, overcoming the electroosmotic flow which is acting against the direction of electrorepulsion. Cumulative amount of levodopa transported was increased as the current density or drug concentration was increased. When amount of current dose was constant, continuous current was more beneficial than pulsed current in promoting levodopa permeation. Similar transport results were obtained when hydrogel was used as the donor phase. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules. The results also indicate that, only at very low pH like pH 1.0, electrorepulsion can be the dominant force over the electroosmosis in the levodopa transport.

Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes (탄소나노튜브를 적용한 나노유체의 비등 열전달계수)

  • Lee, Yo-Han;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

The Effect of the Ground Composition on Thermal Environment in Multi -residential Building Block (공동주택 단지 내 지반 특성 및 지반 구성에 따른 열적 특성에 관한 연구)

  • Hwang, Hyo-Keun;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.88-97
    • /
    • 2009
  • In these days, it attracts our attention to create a green outdoor environment around the building block in urban area. Green space and permeable ground covering are increased by laws and regulations. According to these trends, variety researches for improving outdoor environment are accomplished at this moment. However, the problems for outdoor environment such as heat island effect and air contaminant in urban area are still reported. The purpose of this study is to examine the variables to affect the formation of outdoor thermal environment by quantitative analysis. As a initial study, in this paper, the effect of ground composition on changes of surface temperature and heat flux in multi-residential building were analyzed by field measurement and numerical simulation. Through field measurement, the surface temperature and heat flux of artificial ground in multi-residential building in Suwon city were measured. The result showed that the surface temperature was decreased by about $20^{\circ}C$ with afforestation of artificial ground compared with those of concrete covering. Moreover, the inner temperature of artificial ground was changed as same behaviors of outdoor temperature changes to depths of 20cm. In simulation, the effect of soil types and depth of artificial ground on the changes of the surface temperature and heat flux were analyzed. As results, the natural soil ground was more effective against lowering the surface temperature than any other cases in the analyzed cases.