• Title/Summary/Keyword: C-fiber

Search Result 3,362, Processing Time 0.032 seconds

Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles

  • Nam, Ki-Mok;Mees, Karina;Park, Ho-Seon;Willert-Porada, Monika;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2431-2437
    • /
    • 2014
  • In this study, Ni, Ni-Cu and Ni/Cu catalysts were deposited onto C-fiber textiles via the electrophoretic deposition method, and the growth characteristics of carbon nanofibers on the deposited catalyst/C-fiber textiles were investigated. The catalyst deposition onto C-fiber textiles was accomplished by immersing the C-fiber textiles into Ni or Ni-Cu mixed solutions, producing the substrate by post-deposition of Ni onto C-fiber textiles with pre-deposited Cu, and passing it through a gas mixture of $N_2$, $H_2$ and $C_2H_4$ at $700^{\circ}C$ to synthesize carbon nanofibers. For analysis of the characteristics of the synthesized carbon nanofibers and the deposition pattern of catalysts, SEM, EDS, BET, XRD, Raman and XPS analysis were conducted. It was found that the amount of catalyst deposited and the ratio of Ni deposition in the Ni-Cu mixed solution increased with an increasing voltage for electrophoretic deposition. In the case of post-deposition of Ni catalyst onto substrates with pre-deposited Cu, both bimetallic catalyst and carbon nanofibers with a high level of crystallizability were produced. Carbon nanofibers yielded with the catalyst prepared in Ni and Ni-Cu mixed solutions showed a Y-shaped morphology.

ON A FIBER SPACE OVER A CURVE

  • Shin, Dong-Kwan
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.539-541
    • /
    • 1997
  • Let X be a smooth projective threefold. Let C be a smooth projective curve and let $f : X \to C$ be a fiber space with connected fiber S. Assume that $q_1(S) = 0$. Then we have $-X(O_C)X(O_S) \leq -X(O_X)$.

  • PDF

Microwave-Assisted Heating of Electrospun SiC Fiber Mats

  • Khishigbayar, Khos-Erdene;Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • Flexible silicon carbide fibrous mats were fabricated by a combination of electrospinning and a polymer-derived ceramics route. Polycarbosilane was used as a solute with various solvent mixtures, such as toluene and dimethylformamide. The electrospun PCS fibrous mats were cured under a halogen vapor atmosphere and heat treated at $1300^{\circ}C$. The structure, fiber morphology, thermal behavior, and crystallization of the fabricated SiC fibrous mats were analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal imaging. The prepared SiC fibrous mats were composed of randomly distributed fibers approximately $3{\mu}m$ in diameter. The heat radiation of the SiC fiber mats reached $1600^{\circ}C$ under microwave radiation at a frequency of 2.45 GHz.

Heat-Generating Behavior of SiC Fiber Mat Composites Embedded with Ceramic Powder for Heat Conservation

  • Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.583-588
    • /
    • 2019
  • Silicon carbide (SiC) fiber mats generate large amounts of heat through microwave interactions and are used as heating elements in rapid heat treatment furnaces. However, SiC fibers cool immediately when the microwave power is turned off. Therefore, ceramic layers are inserted between the SiC fiber layers to improve the heat conservation performance of SiC fiber mats. In this study, we fabricated SiC fiber mat composites (SMCs) with ceramic layers under various pressures. The SMC fabricated under 0.007 kPa showed the lowest heat-generating temperature and deviation because less necking was observed between the materials. On the other hand, the SMC fabricated under 0.375 kPa showed the highest heat-generating temperature of 1532.33℃. The SMCs prepared in this study using ceramic powder not only showed heat-generating temperatures comparable to those of conventional SiC fiber mats but also exhibited excellent heat-preserving ability.

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.

Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane (폴리카보실란으로부터 제조된 탄화규소 중공사의 미세구조제어)

  • Shin, Dong-Geun;Kong, Eun-Bae;Cho, Kwang-Youn;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Hong, Jun-Sung;Riu, Doh-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SiC hollow fiber was fabricated by curing, dissolution and sintering of Al-PCS fiber, which was melt spun the polyaluminocarbosilane. Al-PCS fiber was thermally oxidized and dissolved in toluene to remove the unoxidized area, the core of the cured fiber. The wall thickness ($t_{wall}$) of Al-PCS fiber was monotonically increased with an increasing oxidation curing time. The Al-PCS hollow fiber was heat-treated at the temperature between 1200 and $2000^{\circ}C$ to make a SiC hollow fibers having porous structure on the fiber wall. The pore size of the fiber wall was increased with the sintering temperature due to the decomposition of the amorphous $SiC_xO_y$ matrix and the growth of ${\beta}$-SiC in the matrix. At $1400^{\circ}C$, a nano porous wall with a high specific surface area was obtained. However, nano pores grew with the grain growth after the thermal decomposition of the amorphous matrix. This type of SiC hollow fibers are expected to be used as a substrate for a gas separation membrane.

Dyeing of PTT Fiber(1) - Effect of Heat Setting on Dyeing and Physical Properties of PTT Fiber - (PTT 섬유의 염색성 (1) - 열처리한 PTT 섬유의 염색성 및 물성 -)

  • 이두환;정동석;이문철
    • Textile Coloration and Finishing
    • /
    • v.14 no.5
    • /
    • pp.268-276
    • /
    • 2002
  • Poly(trimethylene terephthalate)(PTT) and Poly(ethylene terephthalate)(PET) fibers were annealed at various temperatures ranging from $100^\circ{C}$ to $230^\circ{C}$ for 10 min under tension and tension free. Dyeing rates and absorption isotherms of both fibers were obtained with C.I. Disperse Red 60 at 100, 120 and $130^\circ{C}$ in water system. Also X-ray diffraction pattern, moisture regain and water absorption were investigated. The dyeing rate of PTT fiber is faster than PET fiber, and dyeing of PTT fiber begin at lower temperature compared to PET fiber. The absorption isotherms from both fibers with disperse dye we nearly linear up to the saturation dye uptake, which increase with dyeing temperature. Equilibrium dye uptake of PTT fiber annealed under tension above $180^\circ{C}$ was remarkably decreased because of a changes in the fine structure of fiber. The intensities of X-ray diffraction peaks of both annealed fibers were increased with increasing in annealed temperature. The reflections observed at $2\theta$=$15.8^\circ$, $24^\circ$ and $25.2^\circ$ were assigned reflection of crystal at the planes of (010), $(1\bar02,\;\bar112),\;and\;(\bar13,\; \bar113)$ respectively, and the peak became sharp with heat setting temperature.

Characterization of SiC Fiber Derived from Polycarbosilanes with Controlled Molecular Weight (분자량이 조절된 폴리카보실란으로부터 제조한 SiC Fiber의 특성분석)

  • Shin, Dong-Geun;Riu, Doh-Hyung;Kim, Younghee;Kim, Hyung-Rae;Park, Hong-Sik;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.593-598
    • /
    • 2005
  • Polycarbosilane was synthesized by the Kumada rearrangement of polydimethylsilane in the presence of zeolite (ZSM-5) as a catalyst at $350^{\circ}C$. The prepared polycarbosilane had very low molecular weight ($M_w=500$), so that it was not suitable to fabricate SiC fiber by melt spinning. Further polymerization of PCS was conducted around $400^{\circ}C$ to obtain spinnable polycarbosilane. After polymerization, the polycarbosilanes were isolated by distillation according to the molecular weight distributions. The PCS with a controlled molecular weight distribution was spun into continuous polycarbosilane green fibers. The PCS green fiber was successfully transformed into silicon oxycarbide fiber. The room temperature strength of the SiC fiber was around 1.5 - 1.8 GPa. The oxidation behavior and the tensile strength after oxidation were also evaluated.

Spectroscopy of acetylene (13C2H2) using a tunable erbium-doped fiber ring laser (파장가변 광섬유 링 레이저를 이용한 아세틸렌(13C2H2) 분광)

  • 유한영;오정미;이동한;문한섭;이원규;박갑동;서호성
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.674-679
    • /
    • 2003
  • We fabricated erbium-doped fiber ring laser with a new structure that can operate in C- & L-band wavelength region. The wave-length of the laser can be tuned continuously over 102 nm between 1510.4-1612.6 nm by insertion of the fiber Fabry-Perot tunable filter (FFP-TF) in the ring cavity. By use of the wavelength tunable characteristics of our fiber laser, we measured absorption spectra of more than fifty transition lines of the acetylene ($^{13}$ C$_2$H$_2$) molecule with high signal to noise ratio (SNR).