• Title/Summary/Keyword: C-dump converter

Search Result 24, Processing Time 0.022 seconds

An Improved C-Dump Converter for Switched Reluctance Motors (SRM 구동을 위한 향상된 C-Dump 컨버터)

  • Kim, Chong-Chul;Lee, Dong-Yun;Hur, Jin;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.90-92
    • /
    • 2002
  • This paper presents an improved C-Dump converter system for switched reluctance motors(SRM). The proposed C-Dump converter derived from the conventional converter for SRM. The proposed converter could overcome the limitation of the conventional C-Dump converter, and could reduce the whole cost of the SRM system since the voltage stress of the dump switch $T_d$ is reduced to $V_{dc}$ when compared with $2V_{dc}$ for the conventional C-Dump converter. The attractive features of the proposed converters are; high-efficient and low-cost, elimination of dump inductor, simple control strategy, smaller size arid light weight. The proposed converter is able to be fast magnetization by $2V_{dc}$, which is sum of the input voltage and charging voltage of the dump capacitor. Also, this topology has many advantages such as freewheeling of phase winding without complex control, reduction of current ripple, reduction of torque ripple, and reduction of switching frequency. Simulation demonstrates the good performance of the converter.

  • PDF

A Study on Converter Topology to Drive Switched Reluctance Motor (SRM) (스위치드 릴럭턴스 전동기(SRM) 구동용 Converter Topology 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Switched Reluctance Motor (SRM) has a characteristic that the inductance changes very nonlinearly depending on the magnitude of the current and the relative position of the rotor and stator, and the torque is generated In consideration of these problems, many studies have been conducted on a topology for driving that can improve efficiency and performance in an existing asymmetric bridge converter in order to simplify the circuit and economic efficiency. Therefore, in this paper, we want to check the performance by comparing and analyzing each converter used by applying it as a topology for SRM driving. The driving converters applied to the comparison and analysis are Conventional C-dump, Modified C-dump, Energy efficient C-dump, Resonant C-dump converter with C-dump converter type structure and the most widely used asymmetric bridge converter and 6-Switch inverter that used for general motors.

A study on the Energy Efficient C-Dump Converters for Switched Reluctance Motor Drives (SRM구동을 위한 Energy Efficient C-Dump 컨버터에 관한 연구)

  • Choi J.H.;Yoon Y.H.;Song B.S.;Won C.Y.;Kim G.S.;Choi S.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.105-108
    • /
    • 2001
  • This paper compared a Modified C-dump converter and energy efficient converter topologies, derived from the conventional C-dump converter, for switched reluctance motor (SRM) drives. The proposed topologies overcome the limitations of the conventional C-dump converter, and could reduce the whole cost of the SRM drive. Also, the above converters have simple control requirements; and allow the motor phase current to freewheel during chopping mode. Specially, the voltage ratings of the dump capacitor and some of the switching devices in the proposed an Energy efficient C-dump converter is reduced to the supply voltage ($V_{dc}$) level compared to twice the supply voltage ($2V_{dc}$) in the conventional C-dump converter. Simulation and experimental results of the proposed converters are presented and verified.

  • PDF

Control of C-dump Converters fed from Switched Reluctance Motors on an Automotive Application

  • Yoon Yong-Ho;Kim Yuen-Chung;Song Sang-Hoon;Won Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.120-128
    • /
    • 2005
  • This paper deals with the analysis of switched reluctance motor drives for different drive circuit topologies used in automobile. So we attempt to improve the weaknesses associated with the asymmetric bridge converter in the limited internal environment of automotive application. Two kinds of c-dump converters are tested in terms of dump capacitor voltage, speed response according to the variation of advance angle and efficiency for the radiator cooling-fan drive of an automobile. They enable more economical and efficient converter topology for automobile industries. This paper describes the performance characteristics of 12V-250W-3000rpm SRM drives for automotive application. Computer simulation and experiment results are then presented to verify the performance of the two kinds of c-dump converters.

High Performance Control of Switched Reluctance Motor Drive System for Automobiles by C-dump Converter (C-dump Converter에 의한 차량용 스위치드 릴럭턴스 전동기 구동 시스템의 고성능제어)

  • Kim D.K.;Yoon Y.H.;Lee T.W.;Won C.Y.;Kim Y.R.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.860-865
    • /
    • 2003
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount important. The paper describes the essential elements, faced in designing and constructing drive circuits for a switched reluctance motor for automobiles. These converters will be referred to as energy efficient C-dump converter and modified C-dump converter Energy efficient C-dump converter topology eliminate all the disadvantages of the C-dump converter without sacrificing its attractive features, and also provide some additional advantages that have lower number of power devices, full regenerative capability, free-wheeling in chopping or PWM mode, simple control strategy, and faster demagnetization during commutation. The experiments are peformed to verify the capability of proposed control method on 6/4 salient type SRM.

  • PDF

High Performance Control of SRM Drive System for Automobiles by C-dump Converter (C-dump Converter에 의한 차량용 SRM 구동 시스템의 고성능제어)

  • 김도군;윤용호;이태원;원충연;김영렬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.534-542
    • /
    • 2003
  • Small electric motors in an automobile perform various tasks such as engine cooling, pumping, HVAC etc. At present, most of them are DC motors supplied by 12V or 24V batteries. However, DC motors suffer from low efficiency, life cycles and reliability. Therefore, there is a growing interest in substituting DC motors for advanced at motors including switched reluctance motors(SRM). Although there are several other forms SRM convertors, they are either unsatisfactory to the control performance or unsuitable for the 12V battery source. Especially, a conventional asymmetric converter of SRM provides the best flexible and effective control to the current waveform of SRM, but it has the most switches and produces conducting voltage drops across two power switches during SRM operation. For automotive applications with a 12V battery source, this circuit is inadequate. For considering the requirement for effective operation and simple structure of converter in the limited internal circumstance of automobiles, the author inclines toward selecting Modified C-dump converter and Energy efficient c-dump converter.

Characteristic Analysis of C-dump Converter Topology for SRM of Electric Multiple Unit Door Driving (전동차 출입문 구동을 위한 SRM용 C-dump 컨버터 Topology 특성 비교)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1597-1604
    • /
    • 2016
  • The speed at which the SRM (Switched Reluctance Motor) makes a transition from chopping control to single pulse operation. (i.e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on energy efficient C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

A study Energy efficient converter (컨버터에서 에너지 변환에 관한 연구)

  • Jung, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.84-87
    • /
    • 2004
  • The Attractive features of the proposed converter has lower number of power devices and also has full regenerative capability, freewheeling in chopping or PWM mode, simple control strategy and faster demagnetization during commutation. The dump component energy requirements are much lower in this converter topology than another C-dump converters. As a result, The proposed converter has improved efficiency in the overall system than Modified C-dump converter, this thesis was approved its superiority by simulation and experimental results.

  • PDF

Radiator Cooling Fan System by Switched Reluctance Motor for Automobiles (SRM을 이용한 자동차용 Radiator 냉각팬 구동시스템)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Park, Sang-Hoon;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.235-240
    • /
    • 2009
  • In automobile, the introduction of electronically commutated motors has been accompanied by a proliferation of electronic devices. With this proliferation of electronic devices, an emphasis has been placed on EMC issues. This paper is proposed to use SRM as a radiator cooling fan in automotive applications. To drive SRM, Energy efficient C-dump converter is applied. Energy efficient C-dump converter, derived from the conventional C-dump converter, is proposed as a switched reluctance motor (SRM) drive for automotive engine cooling application. It is verified more efficient than other converters through simulation and experiments. And also SRM is valid for automotive applications that have strict EMC standards. Simulation and experimental results obtained on a laboratory prototype are finally presented to evaluate the performance.

Control of SRM with Modified C-dump Converter in Cooling System of Automobiles (Modified C-dump 컨버터를 이용한 자동차 냉각시스템 SRM 제어)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1297-1302
    • /
    • 2017
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount importance. The paper describes the essential elements faced in designing and constructing driving circuits for a switched reluctance motor for automobiles. An important factor in the selection of a motor and a drive for industrial application is the cost. The switched reluctance motor(SRM) is a simple, low-cost, and robust motor suitable for variable-speed as well as servo-type applications. With relatively simple converter and control requirements, the SRM is gaining an increasing attention in the drive industry. This paper presents a modified C-dump converter for Switched Reluctance Motor (SRM) machine application in the cooling system of automobiles. The experiments are performed to verify the capability of applicate control method on 6/4 salient type SRM.