• Title/Summary/Keyword: C-domain

Search Result 2,113, Processing Time 0.029 seconds

Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins (박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용)

  • 김학준;김영태
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 1996
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, is required for T7 DNA replication, recombination, and repair. T7 gene 2.5 protein has two distinctive domains, DNA binding and C-terminal domain, directly involved in protein-protein interaction. Gene 2.5 protein participates in the DNA replication of Bacteriophage T7, which makes this protein essential for the T7 growth and DNA replication. What gene 2.5 protein makes important at T7 growth and DNA replication is its binding affinity to single-stranded DNA and the protein-protein important at T7 DNA replication proteins which are essential for the T7 DNA synthesis. We have constructed pGST2.5(WT) encoding the wild-type gene 2.5 protein and pGST2.5$\Delta $21C lacking C-terminal 21 amino acid residues. The purified GST-fusion proteins, GST2.5(WT) and GST2.5(WT)$\Delta$21C, were used for whether the carboxyl-terminal domain participates in the protein-protein interactions or not. GST2.5(WT) and GST2.5$\Delta$21C showed the difference in the protein-protein interaction. GST2.5(WT) interacted with T7 DNA polymerase and gene 4 protein, but GST2.5$\Delta$21C did not interact with either protein. Secondly, GST2.5(WT) interacts with gene 4 proteins (helicase/primase) but not GST2.5$\Delta$21C. these results proved the involvement of the carboxyl-terminal domain of gene 2.5 protein in the protein-protein interaction. We clearly conclude that carboxy-terminal domain of gene 2.5 protein is firmly involved in protein-protein interactions in T7 replication proteins.

  • PDF

Feature Selection with PCA based on DNS Query for Malicious Domain Classification (비정상도메인 분류를 위한 DNS 쿼리 기반의 주성분 분석을 이용한 성분추출)

  • Lim, Sun-Hee;Cho, Jaeik;Kim, Jong-Hyun;Lee, Byung Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • Recent botnets are widely using the DNS services at the connection of C&C server in order to evade botnet's detection. It is necessary to study on DNS analysis in order to counteract anomaly-based technique using the DNS. This paper studies collection of DNS traffic for experimental data and supervised learning for DNS traffic-based malicious domain classification such as query of domain name corresponding to C&C server from zombies. Especially, this paper would aim to determine significant features of DNS-based classification system for malicious domain extraction by the Principal Component Analysis(PCA).

Two Kinesins from Arabidopsis, KatB and KatC, Have a Second Microtubule-binding Site in the Tail Domain

  • Jiang, Shiling;Li, Ming;Xu, Tao;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.44-52
    • /
    • 2007
  • Kinesins, as a kind of microtubule-based motor proteins, have a conserved microtubule-binding site in their motor domain. Here we report that two homologous kinesins in Arabidopsis thaliana, KatB and KatC, contain a second microtubule-binding site in their tail domains. The prokaryotic-expressed N-terminal tail domain of the KatC heavy chain can bind to microtubules in an ATP-insensitive manner. To identify the precise region responsible for the binding, a serious of truncated KatC cDNAs encoding KatC N-terminal regions in different lengths, KatC1-128, KatC1-86, KatC1-73 and KatC1-63, fused to Histidine-tags, were expressed in E. coli and affinity-purified. Microtubule cosedimentation assays show that the site at amino acid residues 74-86 in KatC is important for microtubule-binding. By similarity, we obtained three different lengths of KatB N-terminal regions, KatB1-384, KatB1-77, and KatB1-63, and analyzed their microtubule-binding ability. Cosedimentation assays indicate that the KatB tail domain can also bind to microtubules at the same site as and in a similar manner to KatC. Fluorescence microscopic observations show that the microtubule-binding site at the tail domain of KatB or KatC can induce microtubules bundling only when the stalk domain is present. Through pull-down assays, we show that KatB1-385 and KatC1-394 are able to interact specifically with themselves and with each other in vitro. These findings are significant for identifying a previously uncharacterized microtubule-binding site in the two kinesin proteins, KatB and KatC, and the functional relations between them.

Expression, Purification and NMR studies of SH3YL1 SH3 domain

  • Shrestha, Pravesh;Yun, Ji-Hye;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.105-116
    • /
    • 2010
  • SH3YL1, a novel protein containing one Src homology 3 domain at the carboxyl terminus was first detected in mouse anagen skin cDNA. This protein had a significant homology with YHRO 16c/Ysc 84, the yeast Src homology 3 domain-containing protein. The sequence identity was remarkable at the carboxyl and amino-terminal Src homology 3 domain, suggesting that the novel protein is a mouse homolog of the yeast protein and thus was termed as SH3YL1. SH3YL1 is composed of two domains, a DUF500 at N-termini and a SH3 domain at C-termini. In our study we cloned the SH3 domain in bacterial expression system in Escherichia coli using pET32a vector with TEV protease cleavage site and purified as a monomer using affinity chromatography. The N-terminal poly-Histidine tag was cleaved with TEV protease and target protein was used for backbone studies. Our study showed that SH3 domain primarily consists of $\beta$-sheet which is in consistence with previous result performed on the truncated SH3 domain of SH3YL1.

The N-Terminal α-Helix Domain of Pseudomonas aeruginosa Lipoxygenase Is Required for Its Soluble Expression in Escherichia coli but Not for Catalysis

  • Lu, Xinyao;Wang, Guangsheng;Feng, Yue;Liu, Song;Zhou, Xiaoman;Du, Guocheng;Chen, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1701-1707
    • /
    • 2016
  • Lipoxygenase (LOX) is an industrial enzyme with wide applications in food and pharmaceutical industries. The available structure information indicates that eukaryotic LOXs consist of N terminus β-barrel and C terminus catalytic domains. However, the latest crystal structure of Pseudomonas aeruginosa LOX shows it is significantly different from those of eukaryotic LOXs, including the N-terminal helix domain. In this paper, the functions of this N-terminal helix domain in the soluble expression and catalysis of P. aeruginosa LOX were analyzed. Genetic truncation of this helix domain resulted in an insoluble P. aeruginosa LOX mutant. The active C-terminal domain was obtained by dispase digestion of the P. aeruginosa LOX derivative containing the genetically introduced dispase recognition sites. This functional C-terminal domain showed raised substrate affinity but reduced catalytic activity and thermostability. Crystal structure analyses demonstrate that the broken polar contacts connecting the two domains and the exposed hydrophobic substrate binding pocket may contribute to the insoluble expression of the C terminus domain and the changes in the enzyme properties. Our data suggest that the N terminus domain of P. aeruginosa LOX is required for its soluble expression in E. coli, which is different from that of the eukaryotic LOXs. Besides this, this N-terminal domain is not necessary for catalysis but shows positive effects on the enzyme properties. The results presented here provide new and valuable information on the functions of the N terminus helix domain of P. aeruginosa LOX and further improvement of its enzyme properties by molecular modification.

The Relationship between Domain Switching and Acoustic Emission in (Pb,La)$TiO_3$ Ferroelectric Ceramacs ((Pb,La)$TiO_3$ 강유전체 세라믹에서 분역반전과 Acoustic Emission의 관계)

  • 최동구;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.672-678
    • /
    • 1996
  • The relationship between domain switching and acoustic emission (AE) during poling was investigated using the tetragonal ferroelectric ceramics with composition of (Pb,La)TiO3+0.01MnO2 The amount of AE generation during poling increased with increasing dc electric field and raising temperature. It was confirmed that the change of the amount of AE generation with poling condition resulted from the difference of the amount of 90$^{\circ}$ domain switching and total amount of AE generation for 10 minutes was approximately proportional to the amount of 90$^{\circ}$domain switching. The A generations of two specimens which have different tetragonality rations(c/s rations) 15 at% and 24at% La-doped were also investigated. The sample with c/a ratio of 1.012 where 90$^{\circ}$ domains are dominate had larger amount of AE generation and 90$^{\circ}$ domain switching compared with the sample with c/a ratio of 1.004 where 180$^{\circ}$ domains are dominant.

  • PDF

Structural characterization of the putative DNA-binding domain of CP2c and its relevance to zinc binding

  • Ryu, Ki-Sung;Jo, Ku-Sung;Kim, Na-Young;Jeon, Eun-Jae;Park, Sung Jean;Kim, Hyun-Hwi;Kim, Eun-Hee;Kim, Chan-Gil;Kim, Chul Geun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • The transcription factor CP2c has been recently validated as an oncogenic protein that can serve as a promising target for anticancer therapy. We have recently documented that a recombinant protein corresponding to the putative DNA-binding region (residues 63-244) of CP2c adopted two different conformers, one of which is dominated by zinc binding. However, in the present study, a longer construct encompassing residues 63-302 appeared to form a single structural domain. This domain could be considered to adopt a functionally relevant fold, as the known specific binding of a dodecapeptide to this protein was evident. Hence, the residues 63-302 region rather than 63-244 can be regarded as a natively folded structural domain of CP2c. In addition, it was confirmed that zinc ions can bind to this putative DNA-binding domain of CP2c, which resulted in reduced stability of the protein. In this context, it is suggested that the mode of action of CP2c would resemble that of tumor suppressor p53.

Purification and NMR Studies of RNA Polymerase II C-Terminal Domain Phosphatase 1 Containing Ubiquitin Like Domain

  • Ko, Sung-Geon;Lee, Young-Min;Yoon, Jong-Bok;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1039-1042
    • /
    • 2009
  • RNA polymerase II C-terminal domain phosphatase 1 containing ubiquitin like domain (UBLCP1) has been identified as a regulatory molecule of RNA polymerase II. UBLCP1 consists of ubiquitin like domain (UBL) and phosphatase domain homologous with UDP and CTD phosphatase. UBLCP1 was cloned into the E.coli expression vectors, pET32a and pGEX 4T-1 with TEV protease cleavage site and purified using both affinity and gel-filtration chromatography. Domains of UBLCP1 protein were successfully purified as 7 mg/500 mL (UBLCP1, 36.78 KDa), 32 mg/500 mL (UBL, 9 KDa) and 8 mg/500 mL (phosphatase domain, 25 KDa) yielded in LB medium, respectively. Isotope-labeled samples including triple-labeled ($^2H/^{15}N/^{13}C$) UBLCP1 were also prepared for hetero-nuclear NMR experiments. $^{15}N-^{1}H$ 2D-HSQC spectra of UBLCP1 suggest that both UBL and phosphatase domain are properly folded and structurally independent each other. These data will promise us further structural investigation of UBLCP1 by NMR spectroscopy and/or X-ray crystallography.

Structure of the Starch-Binding Domain of Bacillus cereus $\beta-Amylase$

  • Yoon, Hye-Jin;Akira, Hirata;Motoyasu, Adachi;Atsushi, Sekine;Shigeru, Utsumi;Bunzo, Mikami
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1999
  • The C-terminal starch-binding domain of Bacillus cereus $\beta$-amylase expressed in Escherichia coli was purified and crystallized using the vapor diffusion method. The crystals obtained belong to a space group of $P3_2$ 21 with cell dimensions, a=b=60.20${\AA},\; c=64.92{\AA},\; and \; \gamma = 120^{\circ}$ The structure was determined by the molecular replacement method and refined at 1.95 ${\AA}$, with R-factors of 0.181. The final model of the starch-binding domain comprised 99 amino acid residues and 108 water molecules. The starch-binding domain had a secondary structure of two 4-stranded antiparallel p-sheets similar to domain E of cyclodextrin glucanotransferase and the C-terminal starch-binding domain of glucoamylase. A comparison of the structures of these starch-binding domains revealed that the separated starch-binding domain of Bacillus cereus $\beta-Amylase$had only one starch-binding site (site 1) in contrast to two sites (site 1 and site 2) reported in the domains of cyclodextrin glucanotransferase and glucoamylase.

  • PDF