• Title/Summary/Keyword: C-channel

Search Result 2,162, Processing Time 0.042 seconds

Large eddy simulation on the turbulent mixing phenomena in 3×3 bare tight lattice rod bundle using spectral element method

  • Ju, Haoran;Wang, Mingjun;Wang, Yingjie;Zhao, Minfu;Tian, Wenxi;Liu, Tiancai;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1945-1954
    • /
    • 2020
  • Subchannel code is one of the effective simulation tools for thermal-hydraulic analysis in nuclear reactor core. In order to reduce the computational cost and improve the calculation efficiency, empirical correlation of turbulent mixing coefficient is employed to calculate the lateral mixing velocity between adjacent subchannels. However, correlations utilized currently are often fitted from data achieved in central channel of fuel assembly, which would simply neglect the wall effects. In this paper, the CFD approach based on spectral element method is employed to predict turbulent mixing phenomena through gaps in 3 × 3 bare tight lattice rod bundle and investigate the flow pulsation through gaps in different positions. Re = 5000,10000,20500 and P/D = 1.03 and 1.06 have been covered in the simulation cases. With a well verified mesh, lateral velocities at gap center between corner channel and wall channel (W-Co), wall channel and wall channel (W-W), wall channel and center channel (W-C) as well as center channel and center channel (C-C) are collected and compared with each other. The obvious turbulent mixing distributions are presented in the different channels of rod bundle. The peak frequency values at W-Co channel could have about 40%-50% reduction comparing with the C-C channel value and the turbulent mixing coefficient β could decrease around 25%. corrections for β should be performed in subchannel code at wall channel and corner channel for a reasonable prediction result. A preliminary analysis on fluctuation at channel gap has also performed. Eddy cascade should be considered carefully in detailed analysis for fluctuating in rod bundle.

Modulation of Large Conductance $Ca^{2+}-activated$ $K^+4$ Channel of Skin Fibroblast (CRL-1474) by Cyclic Nucleotides

  • Yun, Ji-Hyun;Kim, Seung-Tae;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • Potassium channels in human skin fibroblast have been studied as a possible site of Alzheimer disease pathogenesis. Fibroblasts in Alzheimer disease show alterations in signal transduction pathway such as changes in $Ca^{2+}$ homeostasis and/or $Ca^{2+}-activated$ kinases, phosphatidylinositol cascade, protein kinase C activity, cAMP levels and absence of specific $K^+$ channel. However, little is known so far about electrophysiological and pharmacological characteristics of large-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) channel in human fibroblast (CRL-1474). In the present study, we found Iberiotoxin- and TEA-sensitive outward rectifying oscillatory current with whole-cell recordings. Single channel analysis showed large conductance $K^{+}$ channels (106 pS of chord conductance at +40 mV in physiological $K^+$ gradient). The 106 pS channels were activated by membrane potential and $[Ca^{2+}]_i$, consistent with the known properties of $BK_{Ca}$ channels. $BK_{Ca}$ channels in CRL-1474 were positively regulated by adenylate cyclase activator ($10{\mu}M$ forskolin), 8-Br-cyclic AMP ($300{\mu}M$) or 8-Br-cyclic GMP ($300{\mu}M$). These results suggest that human skin fibroblasts (CR-1474) have typical $BK_{Ca}$ channel and this channel could be modulated by c-AMP and c-GMP. The electrophysiological characteristics of fibroblasts might be used as the diagnostic clues for Alzheimer disease.

Blind Nonlinear Channel Equalization by Performance Improvement on MFCM (MFCM의 성능개선을 통한 블라인드 비선형 채널 등화)

  • Park, Sung-Dae;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2158-2165
    • /
    • 2007
  • In this paper, a Modified Fuzzy C-Means algorithm with Gaussian Weights(MFCM_GW) is presented for nonlinear blind channel equalization. The proposed algorithm searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function and Gaussian weighted partition matrix instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function(RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a simplex genetic algorithm(GA), a hybrid genetic algorithm(GA merged with simulated annealing(SA): GASA), and a previously developed version of MFCM. It is shown that a relatively high accuracy and fast search speed has been achieved.

A new four-layer channel router using the diagonal routing (대각선배선을 사용한 4층 채널배선에 관한 연구)

  • 이병호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.9-17
    • /
    • 1997
  • This paper proposes a routing model based on the HVHD for four-layer routing problems. Differing from the HVHV and HVHH models, the proposed HVHD model permits diagonal routing on the fourth laye rwith a grid of 45.deg., 90.deg. and 135.deg. directions. The developed algorithm which uses a channel-graph including weights routes a layer using diagonal model and the othe rthree layers using HVH model. Applications to several benchmark examples verify that approximately 10~25 percent reduction of channel density can be achieved compared to the conventional four-layer channel routing algorithms.

  • PDF

Comparison Study of Channel Estimation Algorithm for 4S Maritime Communications (4S 해상 통신을 위한 채널 추정 알고리즘 비교 연구)

  • Choi, Myeong Soo;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.288-295
    • /
    • 2013
  • In this paper, we compare the existing channel estimation technique for 4S (Ship to Ship, Ship to Shore) maritime communications under AWGN channel model, Rician fading channel model, and Rayleigh fading channel model respectively. In general, the received signal is corrupted by multipath and ISI (Inter Symbol Interference). The estimation of a time-varying multipath fading channel is a difficult task for the receiver. Its performance can be improved if an appropriate channel estimation filter is used. The simulation is performed in MATLAB. In this simulation, we use the popular estimation algorithms, LMS (Least Mean Square) and RLS (Recursive Least-Squares) are compared with respect to AWGN, Rician and Rayleigh channels.

Measurement Results of C-ITS Channel Characteristics Using Real Environment Compensation Technique (실 환경 보상기법을 이용한 C-ITS 채널 특성 측정 결과)

  • Kim, Chung-Sup;Kim, Hyuk-Je;Lim, Jong-Su;Chong, Young-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.920-923
    • /
    • 2017
  • In this paper, we design the internal parameters of the SIMO channel sounder suitable for the measurement of the high-speed travel environment channel, and measure the characteristics of the wide-band channel by applying the proposed measurement method to the Yeoju Smart Highway piloted at 5.89 GHz C-ITS. Based on the design of the receiving array structure suitable for the real environment, the linear slope compensation method for the Doppler phase shift is applied to provide a reliable result on the Doppler effect due to the incoming angle information and the surrounding environment in the multipath environment.

A Study on Smartcard Security Evaluation Criteria for Side-Channel Attacks (스마트카드 부채널공격관련 안전성 평가기준 제안)

  • Lee, Hoon-Jae;Lee, Sang-Gon;Choi, Hee-Bong;Kim, Chun-Soo
    • The KIPS Transactions:PartC
    • /
    • v.10C no.5
    • /
    • pp.557-564
    • /
    • 2003
  • This paper analyzes the side channel attacks for smartcard devices, and proposes the smartcard suity evaluation criteria for side-channel attacks. To setup the smartcard security evaluation criteria for side-channel attacks, we analyze similar security evaluation criteria for cryptographic algorithms, cryptographic modules, and smartcard protection profiles based on the common criterion. Futhermore, we propose the smartcard security evaluation criteria for side-channel attacks. It can be useful to evaluate a cryptosystem related with information security technology and in addition, it can be applied to building smartcard protection profile.

Effect of Amino Terminus of Gap Junction Hemichannel on Its Channel Gating (간극결합채널의 아미노말단이 채널개폐에 미치는 영향)

  • Yim Jaegil;Cheon Misaek;Jung Jin;Oh Seunghoon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Gap junction is an ion channel forming between adjacent cells. It also acts as a membrane channel like sodium or potassium channels in a single cell. The amino acid residues up to the $10^{th}$ position in the amino (N)-terminus of gap junction hemichannel affect gating polarity as well as current-voltage (I-V) relation. While wild-type Cx32 channel shows negative gating polarity and inwardly rectifying I-V relation, T8D channel in which threonine residue at $8^{th}$ position is replaced with negatively charged aspartate residue shows reverse gating polarity and linear I-V relation. It is still unclear whether these changes are resulted from the charge effect or the conformational change of the N-terminus. To clarify this issue, we made a mutant channel harboring cysteine residue at the $8^{th}$ position (T8C) and characterized its biophysical properties using substituted-cysteine accessibility method (SCAM). T8C channel shows negative gating polarity and inwardly rectifying I-V relation as wild-type channel does. This result indicates that the substitution of cysteine residue dose not perturb the original conformation of wild-type channel. To elucidate the charge effect two types of methaenthiosulfonate (MTS) reagents (negatively charged $MTSES^-$ and positively charged $MTSET^+$) were used. When $MTSES^-$ was applied, T8C channel behaved as T8D channel, showing positive gating polarity and linear I-V relation. This result indicates that the addition of a negative charge changes the biophysical properties of T8C channel. However, positively charged $MTSET^+$ maintained the main features of T8C channel as expected. It is likely that the addition of a charge by small MTS reagents does not distort the conformation of the N-terminus. Therefore, the opposite effects of $MTSES^-$ and $MTSETT^+$ on T8C channel suggest that the addition of a charge itself rather than the conformational change of the N-terminus changes gating polarity and I-V relation. Furthermore, the accessibility of MTS reagents to amino acid residues at the $8^{th}$ position supports the idea that the N-terminus of gap junction channel forms or lies in the aqueous pore.

Accurate RF C-V Method to Extract Effective Channel Length and Parasitic Capacitance of Deep-Submicron LDD MOSFETs

  • Lee, Sangjun;Lee, Seonghearn
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.653-657
    • /
    • 2015
  • A new paired gate-source voltage RF capacitance-voltage (C-V) method of extracting the effective channel length and parasitic capacitance using the intersection between two closely spaced linear regression lines of the gate capacitance versus gate length measured from S-parameters is proposed to remove errors from conventional C-V methods. Physically verified results are obtained at the gate-source voltage range where the slope of the gate capacitance versus gate-source voltage is maximized in the inversion region. The accuracy of this method is demonstrated by finding extracted value corresponding to the metallurgical channel length.

The Characteristics of Tidal Current and Water Mass in the Narrow Channel 1. Tidal Current and Water mass in the Chungmu Channel (협수로의 수리 특성과 수괴구조 1. 충무수로의 조류와 수괴구조)

  • Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.13 no.2
    • /
    • pp.168-177
    • /
    • 2001
  • The flow pattern and water mass structure in the Chungmu channel were investigated using the field observations during June and July, 2001. The currents in the channel may be regarded as a hydraulic current decided by difference of tide levels between two sides in the channel. The strongest current in the channel occurs around in high water and low water. The coefficient C to be determined the characteristics of velocity in the channel was obtained from an equation, $u=C{\sqrt{2gh}}$ and ranges from 0.37 to 0.65 in the Chungmu Channel at the spring tide and from 0.23 to 0.37 at the neap tide. Eastward tidal transport is usually larger than that of westward transport in Chungmu the Channel. Sea water exchange rates are 39.2% in spring tide and 20.5% in neap tide respectively. The water mass structure in the channel is changed by the speed of the tidal current. The water mass is well mixed at the high water when the current is strong and is stratified at slack water when the current is weak.

  • PDF