• Title/Summary/Keyword: C-V Converter

Search Result 162, Processing Time 0.027 seconds

High Power Factor High Efficiency PFC AC/DC Converter for LCD Monitor Adapter (LCD 모니터의 어댑터를 위한 고역률 고효율 PFC AC/DC 컨버터)

  • Park K. H.;Kim C. E.;Youn M. J.;Moon G. W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • Many single-stage PFC(power-facto.-correction) ACHC converters suffer from the high link voltage at high input voltage and light load condition. In this paper, to suppress the link voltage, a novel high power factor high efficiency PFC AC/DC converter is proposed using the single controller which generates two gate signals so that one of them is used far gate signal of the flyback DC/DC converter switch and the other is applied to the Boost PFC stage. A 130w prototype for LCD monitor adapter with universal input $(90-265V_{rms})$ and 19.5V 6.7A output is implemented to verify the operational principles and performances. The experimental results show that the maximum link voltage stress is about 450V at 270Vac input voltage. Moreover, efficiency and power factor are over $84\%$ and 0.95, respectively, under the full load condition.

  • PDF

Push Pull Forward Converter Efficiency Quility (푸시 풀 포워드 컨버터의 주파수 변화, 변압기의 권선비와 1차측 권선 변화에 대한 효율 특성)

  • Jeon J.S.;Kim C.S,;Kim T.S.;Im B.S.;Woo S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.36-39
    • /
    • 2003
  • The push pull forward converter is a very suitable circuit for low output voltage, high output current applications with a wide input voltage range. All the magnetic components (output inductor, transformer, input filter) can be integrated into a single core. The integrated magnetics can reduce the number of the magnetic components. Developed the push pull forward converter rating are of 36 $\~$72V input and 3.3V/30A output. In this converter, the efficiency was measured by $76.4\%$ at full load and 82.95$\%$ at full load. The maximum efficiency is up to 83.$\%$ at 200kHz switching frequency, l1A output.

  • PDF

A Study on PWM Converter and Inverter Drive System by a Fuel Cell Simulator (연료전지용 Simulator에 의한 PWM 컨버터/인버터 구동시스템에 관한 연구)

  • Gu J.S.;Lee T.W.;Kim J.T.;Won C.Y.;Kim C.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.701-706
    • /
    • 2003
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400v do for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Experimental result is used to support the analysis.

  • PDF

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF

CMOS Voltage down converter using the self temperature-compensation techniques (자동 온도 보상 기법을 이용한 CMOS 내부 전원 전압 발생기)

  • Son, Jong-Pil;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.1-7
    • /
    • 2006
  • An on chip voltage down converter (VDC) using the self temperature-compensation techniques is proposed. At a different gate bias voltage, PMOSFET shows different source to drain current characteristic according to the temperature variation. The proposed VDC can reduce its temperature dependency by the source to drain current ratio of two PMOSFET with different gate bias respectively. Proposed circuit is fabricated in Dongbu-anam $0.18{\mu}m$ CMOS process and experimental results show its temperature dependency of $-0.49mV/^{\circ}C$ and external supply dependency of 6mV/V. Total current consumption is only $1.1{\mu}A@2.5V$.

PFM-Mode Boost DC-DC Convertor for Mobile Multimedia Application (휴대용 멀티기기를 위한 PFM방식의 승압형 DC-DC 변환기)

  • Kim, Ji-Man;Park, Yong-Su;Song, Han-Jung
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.14-18
    • /
    • 2010
  • In this paper, we describe a CMOS DC-DC converter with a variable output voltage(5-7V @100mA) for a portable battery-operated system applications. The proposed DC-DC converter is used along with a Pulse-Frequency Modulation (PFM) method and consists of reference circuit, a feedback resistor, a controller, and an internal oscillator. The integrated DC-DC converter with two external passive components(L,C) has been designed and fabricated on a 0.5um 2-poly 3-metal CMOS process and could be applied to the Personal Digital Assistants(PDA), cellular Phone, Laptop Computer, etc.

Novel Single-Stage Power Factor Correction AC/DC Converter with Low DC Link Voltage using New Magnetic Feedback Technique (새로운 마그네틱 피드백 기법을 이용하여 낮은 링크 전압을 갖는 새로운 단일 전력단 역률 개선 AC/DC 컨버터)

  • Choi E. S.;Yoon H. K.;Kim C. E.;Moon G. W.;Youn M. J.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.528-532
    • /
    • 2004
  • Novel single-stage power factor correction AC/DC converter with low DC link voltage using new magnetic feedback technique is proposed in this paper. The Proposed converter has high power factor, tight output voltage regulation and low link capacitor voltage less than 450V for all the load range through the universal input line. This converter has also no dead-zone in the input current, which is seen in the conventional converter using the previous magnetic feedback technique. In this paper, the analysis of operations and features of the proposed converter is provided, and the experimental results of 90W-prototype shows the low harmonic distortions satisfied with EN 61000-3-2 Class D, high power factor and low link voltage less than 450V.

  • PDF

Dimming Control of the LED Luminaire Emergency Exit Sign Operation using a Hybrid Super Capacitor of DC-DC Convertor (하이브리드 슈퍼커패시터 DC-DC 컨버터를 이용한 LED 비상 유도등 동작 디밍 제어)

  • Hwang, Lark-Hoon;Kim, Jin-Sun;Na, Yong-Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.220-229
    • /
    • 2017
  • In this paper, To take advantage a variety of DC power as the boost DC-DC converter design specifications through the inductor L and capacitor C through PSPICE to calculate the best estimate of the value. Boost DC-DC converter with a switch device using IRF840 and reverse recovery time Schottky diodes with excellent with constant current controller using D10SC6M and resistance can be configured to considering the Power LED Module was driven by the production. Converter's switching frequency is 50 kHz, the first Duty Rate was made to increase gradually depending on the value of the detection were, 10 % in the output voltage. As a result, the simulated Boost Power LED driver characteristics is in comparison with the design specifications, 5% or less as the error was approximated. Finally, when input 15 V were offered, a stable output 24 V were obtained. and Dimming Control through the adjustment of brightness and current consumption were possible.

A Single Inductor Dual Output Synchronous High Speed DC-DC Boost Converter using Type-III Compensation for Low Power Applications

  • Hayder, Abbas Syed;Park, Hyun-Gu;Kim, Hongin;Lee, Dong-Soo;Abbasizadeh, Hamed;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2015
  • This paper presents a high speed synchronous single inductor dual output boost converter using Type-III compensation for power management in smart devices. Maintaining multiple outputs from a single inductor is becoming very important because of inductor the sizes. The uses of high switching frequency, inductor and capacitor sizes are reduced. Owing to synchronous rectification this kind of converter is suitable for SoC. The phase is controlled in time sharing manner for each output. The controller used here is Type-III, which ensures quick settling time and high stability. The outputs are stable within $58{\mu}s$. The simulation results show that the proposed scheme achieves a better overall performance. The input voltage is 1.8V, switching frequency is 5MHz, and the inductor used is 600nH. The output voltages and powers are 2.6V& 3.3V and 147mW &, 230mW respectively.

A Design of CMOS VCO Using Bandgap Voltage Reference (밴드갭 기준 전압을 이용한 CMOS 전압 제어 발진기의 설계)

  • 최진호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.425-430
    • /
    • 2003
  • A CMOS Voltage-Controlled Oscillator(VCO) for application at temperature stable system is designed. The VCO consists of bandgap voltage reference circuit, comparator, and voltage-to-current converter and the VCO has a temperature stable characteristics. The difference between simulated and calculated values is less than about 5% in output characteristics when the input voltage range is from 1V to 3.25V. The CMOS VCO has error less than about $\pm$0.85% in the temperature range from $-25^{\circ}C$ to $75^{\circ}C$.