• Title/Summary/Keyword: C-Band Power Amplifier

Search Result 49, Processing Time 0.252 seconds

A Study on Microwave Self Oscillating Mixer Using Ga As MESFET (GaAs MESFET를 이용한 초고주파 자체발진 혼합기에 관한 연구)

  • Kwon, Dong Seung;Chae, Jong Seok;Park, Han Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.413-419
    • /
    • 1987
  • In this paper, self-oscillating mixer is designed by small signal S-parameter and series feedback circuit. The input-output matching circuit is accomplished from double stub and additional matching stub. The self-oscillating mixer is oscillating itself and amplifies without any external local oscillator and an intermediate frequency amplifier, so it has advantages in its economical and system simplification. The experimental results show the maximum conversion gain 1.5d B and the noise figure 6.5d B at RF center frequency 4GHz and IF 1.1GHz` output oscillating power 4d Bm, efficiency 13.4%, stability -10MHz/V and -0.5MHz/\ulcornerC at oscillating frequency 5.1GHz.The rejection band loss characteristics in band pass filter and low pass filter are -40d B and -30d B, respectively.

  • PDF

A High-Efficiency Driver Design for Mobile Digital Audio Speakers (모바일용 디지털 오디오 스피커를 위한 고효율 드라이버 설계)

  • Kim, Yong-Serk;Rim, Min-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.19-26
    • /
    • 2011
  • In this paper, we designed Interpolation FIR(Finite Impulse Response) filter and 1-bit SDM(Sigma- Delta Modulator) for small digital audio speaker, which has low power consumption and high output characteristics. In order to achieve high linearity and low distortion performance of the systems, we adopt Type I Chevychev FIR filter which has equiripple characteristics in the pass band and proposed high efficient FIR filter structure. SDM is the most efficient modulation technique among the noise shaping techniques. In this paper, we implemented SDM using CIFB(Cascade of Intergrators, Feed-Back) which is generally used in DAC of small digital audio speakers. The proposed SDM structure can achieve high SNR, high-efficiency characteristics and low power consumption in mobile devices. Also considering manufacture of SoC(System on Chip), we performed simulation with Matlab and Verilog HDL to obtain optimal number of operational bits and verified a good experimental results.

A S/C/X-Band GaN Low Noise Amplifier MMIC (S/C/X-대역 GaN 저잡음 증폭기 MMIC)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.430-433
    • /
    • 2017
  • This paper presents a S/C/X-band LNA MMIC with resistive feedback structure in 0.25 um GaN HEMT process. The GaN devices have advantages as a high output power device having high breakdown voltage, energy band gap and stability at high temperature. Since the receiver using the GaN device with high linearity can be implemented without a limiter, the noise figure of the receiver can be improved and the size of receiver module can be reduced. The proposed GaN LNA MMIC based on 0.25 um GaN HEMT device is achieved the gain of > 15 dB, the noise figure of < 3 dB, the input return loss of > 13 dB, and the output return loss of > 8 dB in the S/C/X-band. The current consumption of GaN LNA MMIC is 70 mA with the drain voltage 20 V and the gate voltage -3 V.

A Design of Bandpass Filter for Body Composition Analyzer (체성분 측정기용 대역통과 필터 설계)

  • Bae, Sung-Hoon;Cho, Sang-Ik;Lim, Shin-Il;Moon, Byoung-Sam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.43-50
    • /
    • 2005
  • This paper describes some IC(integrated circuits) design and implementation techniques of low power multi-band Gm-C bandpass filter for body composition analyzer. Proposed BPF(bandpass filter) can be selected from three bands(20 KHz, 50 KHz, 100 KHz) by control signal. To minimize die area, a simple center frequency tuning scheme is used. And to reduce power consumption, operational transconductance amplifier operated in the sub-threshold region is adopted. The proposed BPF is implemented with 0.35 um 2-poly 3-metal standard CMOS technology Chip area is $626.42um\;{\times}\;475.8um$ and power consumption is 700 nW@100 KHz.

A Construction Scheme of Next Generation Wire Communication System by using Long-reach WDM-PON (장거리 전송 파장분할 다중방식 수동형 광가입자망을 이용한 차세대 국방 유선통신체계 구축방안)

  • Kim, Min-Hwan;Lee, Sang-Mook;Lee, Chang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.90-99
    • /
    • 2007
  • We demonstrate an 80km-reach 64-channel DWDM-PON based on wavelength-locked F-P LDs by changing the position of the C-band BLS for upstream channels from the CO to the RN. It mitigates the necessity of the high power C-band BLS and its handling problems. It also reduces back scattering induced penalty. We obtained less than $10^{-6}$ PLRs in all 128channels through 80km SMF. We also demonstrate a 240km-reach DWDM-PON based on wavelength-locked F-P LDs by adding a bidirectional erbium-doped fiber amplifier(EDFA). We show packet-loss-free transmission in all 128channels at 125 Mb/s per channel over 240km SMF We report the detuning effect of arrayed waveguide gratings(AWGs) and crosstalk effect in the implemented system. We Propose an architecture of a next generation defense wire communication system with the demonstrated long-reach DWDM-PON.

Design of BiCMOS Signal Conditioning Circuitry for Piezoresistive Pressure Sensor (압저항형 압력센서를 위한 BiCMOS 신호처리회로의 설계)

  • Lee, Bo-Na;Lee, Moon-Key
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.25-34
    • /
    • 1996
  • In this paper, we have designed signal conditioning circuitry for piezoresistive pressure sensor. Signal conditioning circuitry consists of voltage reference circuit for sensor driving voltage and instrument amplifier for sensor signal amplification. Signal conditioning circuitry is simulated using HSPICE in a single poly double metal $1.5\;{\mu}m$ BiCMOS technology. Simulation results of band-gap reference circuit showed that temperature coefficient of $21\;ppm/^{\circ}C$ at the temperature range of $0\;{\sim}\;70^{\circ}C$ and PSRR of 80 dB. Simulation results of BiCMOS amplifier showed that dc voltage gain, offset voltage, CMRR, CMR and PSRR are outperformed to CMOS and Bipolar, but power dissipation and noise voltage were more improved in CMOS than BiCMOS and Bipolar. Designed signal conditioning circuitry showed high input impedance, low offset and good CMRR, therefore, it is possible to apply sensor and instrument signal conditioning circuitry.

  • PDF

Design of a Fully Integrated Low Power CMOS RF Tuner Chip for Band-III T-DMB/DAB Mobile TV Applications (Band-III T-DMB/DAB 모바일 TV용 저전력 CMOS RF 튜너 칩 설계)

  • Kim, Seong-Do;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.443-451
    • /
    • 2010
  • This paper describes a fully integrated CMOS low-IF mobile-TV RF tuner for Band-III T-DMB/DAB applications. All functional blocks such as low noise amplifier, mixers, variable gain amplifiers, channel filter, phase locked loop, voltage controlled oscillator and PLL loop filter are integrated. The gain of LNA can be controlled from -10 dB to +15 dB with 4-step resolutions. This provides a high signal-to-noise ratio and high linearity performance at a certain power level of RF input because LNA has a small gain variance. For further improving the linearity and noise performance we have proposed the RF VGA exploiting Schmoock's technique and the mixer with current bleeding, which injects directly the charges to the transconductance stage. The chip is fabricated in a 0.18 um mixed signal CMOS process. The measured gain range of the receiver is -25~+88 dB, the overall noise figure(NF) is 4.02~5.13 dB over the whole T-DMB band of 174~240 MHz, and the measured IIP3 is +2.3 dBm at low gain mode. The tuner rejects the image signal over maximum 63.4 dB. The power consumption is 54 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.