A Design of Bandpass Filter for Body Composition Analyzer

체성분 측정기용 대역통과 필터 설계

  • Bae, Sung-Hoon (Department of Computer Engineering, Seokyeong University) ;
  • Cho, Sang-Ik (Department of Computer Engineering, Seokyeong University) ;
  • Lim, Shin-Il (Department of Computer Engineering, Seokyeong University) ;
  • Moon, Byoung-Sam (Bio-engineering R&D Center, Biospace Co., Ltd)
  • 배성훈 (서경대학교 컴퓨터공학과) ;
  • 조상익 (서경대학교 컴퓨터공학과) ;
  • 임신일 (서경대학교 컴퓨터공학과) ;
  • 문병삼 ((주)바이오스페이스 바이오공학 연구소)
  • Published : 2005.09.25

Abstract

This paper describes some IC(integrated circuits) design and implementation techniques of low power multi-band Gm-C bandpass filter for body composition analyzer. Proposed BPF(bandpass filter) can be selected from three bands(20 KHz, 50 KHz, 100 KHz) by control signal. To minimize die area, a simple center frequency tuning scheme is used. And to reduce power consumption, operational transconductance amplifier operated in the sub-threshold region is adopted. The proposed BPF is implemented with 0.35 um 2-poly 3-metal standard CMOS technology Chip area is $626.42um\;{\times}\;475.8um$ and power consumption is 700 nW@100 KHz.

본 논문에서는 체성분 측정기용 저 전력 다중 대역을 가지는 Gm-C 대역통과 필터의 IC화 설계방법에 대해 기술하였다. 제안된 대역통과 필터는 제어 신호에 의해 3개의 중심 주파수(20 KHz, 50 KHz, 100 KHz)에서 동작한다. 칩 면적을 최소화하기 위해 간단한 주파수 튜닝회로가 사용되었으며 전력 소모를 줄이기 위해 OTA(operational transconductance amplifier)가 sub-threshold region에서 동작한다. 제안된 대역통과 필터는 0.35 um 2-poly 3-metal 표준 CMOS 공정을 이용하여 구현하였다. 칩 면적은 $626.42um\;{\times}\;475.8um$이며 전력 소모는 주파수가 100 KHz일 때 700 nW이다.

Keywords

References

  1. R. F. Kunshner and D. A. Schoeller, 'Estimation of Total Body Water by Bioelectrical Impedance Analysis,' Am. J. Clin. Nutr. Vol 44, pp 417-424., 1986
  2. R. F. Kunshner, R. Gudivaka and D. A. Schoeller 'Clinical characteristics influencing bioelectrical impedance analysis measurement,' Am. J. Clil. Nutr. Vol 64 (suppl), pp 423s-427s., 1996
  3. K. Cha and G. M. Chertow, J. Gonzalez, J. M. Lazarus, and D. W. Wilmore, 'Mutifreqauency Bioelectrical Impedance Estimates the Distribution of Body Water,' J. Appl. Physiol. Vol 79, pp. 1316-1319, 1995
  4. P. M. Furth and A. G. Andreou, 'Linearized Differential Transconductors in Subthreshod CMOS,' Electron Lett., Vol. 31, no. 7, pp545-546, Mar. 1995 https://doi.org/10.1049/el:19950376
  5. P. Garde, 'Transconductance Cancellations for Operational Amplifiers,' IEEE J. Solid-State Circuits, vol. 27, no. 1, Jan. 1989
  6. Gabriel A. Rincon-Mora, 'Active Capacitor Multiplier in Miller-Compensated Circuits,' IEEE Tr. On Solid-State Circuits, vol. 35, no. 1, Jan. 2000 https://doi.org/10.1109/4.818917
  7. Jhons, D. A., Martin, K. 'Analog Integrated Circuit Design,' John Wiley & Sons. New York pp. 574-584, 1997
  8. J. Silva-Martinez, M. Steyaert, and W. Sansen, 'High-Performance CMOS Continuous-Time Filters,' Kluwer Academic Publishers, 1993