• Title/Summary/Keyword: C center

Search Result 17,579, Processing Time 0.045 seconds

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

Natural Antioxidants to Improve Stability of Refined Anchovy Oil against Oxidation

  • Park, D.C.;Jr, Ho-Seok;Lee, Heon;Kim, Jeon-Ju;Jung, Yun-Mi;Gyoung, Young-Soo;Kang, Suk-Nam;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.202-206
    • /
    • 2006
  • The oxidation stability of fish oil containing omega-3 polyunsaturated fatty acids (PUFAs), which is very susceptible to oxidative deterioration, needs to be improved before it can be successfully applied to functional foods. The antioxidant activities of 17 species of materials in anchovy oil (AO) were compared and a potent antioxidant was determined to improve the shelf-life of refined AO. Antioxidant activities of the 0.05% (w/w) materials in AO were compared against control during storage at $30^{\circ}C$ for 10 days. While no antioxidant effect was shown in alpha tocopherol against control, 3 species of grapefruit seed extracts (GSEs), astaxanthin (AX), soybean lecithin, and green tea extract showed good antioxidant activities. Especially, GSE B, GSE C, and AX showed significantly high peroxide inhibitory activities (PIAs) of $16.2{\pm}2.1$, $20.{\pm}3.5$, and $17.7{\pm}3.5%$, respectively, after the 4th day (p<0.01). Radical scavenging activities (RSAs) of GSE B, GSE C, and AX were $85.1{\pm}0.8$, $95.3{\pm}0.3$, and $85.9{\pm}0.8%$, respectively. Correlation between PIAs and RSAs was high ($R^2=0.926$) in GSE B, GSE C, and AX. Therefore, we concluded that one of the main antioxidative mechanisms of GSEs and AX must operate through an RSA pathway. The $RC_{50}$ (concentration required for 50% reduction of 1,1-diphenyl-2-picryl-hydrazyl, DPPH) of GSE C was $258\;{\mu}g/mL$.

Characterization and Application of a Novel Thermostable Glucoamylase Cloned from a Hyperthermophilic Archaeon Sulfolobus tokodaii

  • Njoroge, Rose Nyawira;Li, Dan;Park, Jong-Tae;Cha, Hyun-Ju;Kim, Mi-Sun;Kim, Jung-Wan;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.860-865
    • /
    • 2005
  • A gene for a putative glucoamylase, stg, of a hyperthermophilic archae on Sulfolobus tokodaii was cloned and expressed in Escherichia coli. The recombinant glucoamylase (STGA) had an optimal temperature of $80^{\circ}C$ and was extremely thermostable with a D-value of 17 hr. The pH optimum of the enzyme was 4.5. Being different from fungal glucoamylases, STGA hydrolyzed maltotriose (G3) most efficiently. Gel permeation chromatography and sedimentation equilibrium analytical ultracentrifugation analysis showed that the enzyme existed as a dimer. STGA was stable enough to hydrolyze liquefied com starch to glucose in 4 hr at $90^{\circ}C$ with a yield of95%. Comparison of the $k_{cat}$ values for the hydrolysis and the reverse reaction at $75^{\circ}C$ and $90^{\circ}C$ indicated that glucose production by STGA was more efficient at $90^{\circ}C$ than $75^{\circ}C$. Therefore, STGA showed great potential for application to the industrial glucose production process due to its high thermostability.

Thermo-Mechanical Properties of Al2TiO5 Ceramics Stabilized with MgO and ZrO2 Additives (MgO와 ZrO2가 첨가된 Al2TiO5 세라믹의 열·기계적 물성)

  • Kim, Da-Mi;Kim, Hyung-Tae;Kim, Hyeong-Jun;Kim, Ik-Jin;Choi, Seong-Cheol;Kim, Yong-Chan;NamKung, Jung;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.253-258
    • /
    • 2012
  • The characteristics of $Al_2TiO_5$ ceramics were influenced by the additives and the heat treatment that controls the microcrack behavior at grain boundaries. The effect of additives on $Al_2TiO_5$ ceramics were investigated in terms of mechanical properties and thermal expansion at high temperature. The $Al_2TiO_5$ were synthesized at $1500^{\circ}C$, $1550^{\circ}C$ and $1600^{\circ}C$ for 2h by reaction sintering. The formation of $Al_2TiO_5$ phase was increased by additives that enhanced the volume of the microcrack that can lead to low thermal expansion. The mechanical properties of the stabilized $Al_2TiO_5$ ceramics were increased remarkably at $1100^{\circ}C$, $1200^{\circ}C$ and $1300^{\circ}C$ due to the oneset of mechanical healing of grain-bondary microcracks at a high temperature. The amount of microcrack was decreased at lower sintering temperature that causes the increase of mechanical properties at high temperature.

Equimolar Carbon Dioxide Absorption by Ether Functionalized Imidazolium Ionic Liquids

  • Sharma, Pankaj;Park, Sang-Do;Park, Ki-Tae;Jeong, Soon-Kwan;Nam, Sung-Chan;Baek, Il-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2325-2332
    • /
    • 2012
  • A series $[C_3Omim]$[X] of imidazolium cation-based ILs, with ether functional group on the alkyl side-chain have been synthesized and structure of the materials were confirmed by various techniques like $^1H$, $^{13}C$ NMR spectroscopy, MS-ESI, FTIR spectroscopy and EA. More specifically, the influence of changing the anion with same cation is carried out. The absorption capacity of $CO_2$ for ILs were evaluated at 30 and $50^{\circ}C$ at ambient pressure (0-1.6 bar). Ether functionalized ILs shows significantly high absorption capacity for $CO_2$. In general, the $CO_2$ absorption capacity of ILs increased with a rise in pressure and decreased when temperature was raised. The obtained results showed that absorption capacity reached about 0.9 mol $CO_2$ per mol of IL at $30^{\circ}C$. The most probable mechanism of interaction of $CO_2$ with ILs were investigated using FTIR spectroscopy, $^{13}C$ NMR spectroscopy and result shows that the absorption of $CO_2$ in ether functionalized ILs is a chemical process. The $CO_2$ absorption results and detailed study indicates the predominance of 1:1 mechanism, where the $CO_2$ reacts with one IL to form a carbamic acid. The $CO_2$ absorption capacity of ILs for different anions follows the trend: $BF_4$ < DCA < $PF_6$ < TfO < $Tf_2N$. Moreover, the as-synthesized ILs is selective, thermally stable, long life operational and can be recycled at a temperature of $70^{\circ}C$ or under vacuum and can be used repeatedly.

Mechanical Properties and Fabrication of Nanostructured 2MoSi2-SiC by Pulsed Current Activated Combustion Synthesis (펄스 전류 활성 연소합성에 의한 나노구조의 2MoSi2-SIC제조 및 기계적 성질)

  • Shon, In-Jin;Kim, Dong-Ki;Jeong, In-Kyoon;Doh, Jung-Mann;Yoon, Jin-Kook;Ko, In-Yong
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2007
  • Dense nanostructured $2MoSi_{2}-SiC$ composites were synthesized by the pulsed current activated combustion synthesis (PCACS) method within 3 minutes in one step from mechanically activated powders of $Mo_{2}C$ and 5Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense $2MoSi_{2}-SiC$ with relative density of up to 96% was produced under simultaneous application of a 60 MPa pressure and the pulsed current. The average grain size of $MoSi_{2}$ and SiC were about 120 nm and 90 nm, respectively. The hardness and fracture toughness values obtained were 1350 $kg/mm^{2}$ and 4 $MPa{\cdot}m^{1/2}$, respectively.

Inhalation toxicity assesment of C.I.No. Reactive Red 195 in Rats (아조계 반응성염료 C.I.No. Reactive Red 195의 흡입독성평가)

  • Chung, Yong Hyun;Han, Jeong Hee;Song, Kyung Seuk;Kim, Hyeon Yeong;Lee, Sung Bae;Yu, Il Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.198-205
    • /
    • 2001
  • Many reactive dyes have been used in occupational settings without knowing their toxicity and health hazard information. To investigate the toxicity of reactive dye, C.I.No. Reactive Red 195 was exposed to male and female Sprague Dawley rats by inhalation for 28 days. The rats were exposed C.I.No. Reactive Red 195 for 6 hrs per day and 5days per week. The concentrations for the inhalation exposure were 0, 10, 40 and $160mg/m^3$. After 4 weeks of exposure, rats were examined for exposure related changes through pathology, blood biochemistry and hematology. There were no dose related changes including clinical signs, body weight and relative organ weight changes, hematological and biochemical and histopathological findings. The results indicate that no observed adverse effect level (NOAEL) of 28 days inhalatrion toxicity test for C.I.No. Reactive Red 195 was $160mg/m^3$.

  • PDF

Quantitative Microbial Risk Assessment for Campylobacter jejuni in Ground Meat Products in Korea

  • Lee, Jeeyeon;Lee, Heeyoung;Lee, Soomin;Kim, Sejeong;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Kim, Yujin;Lee, Yewon;Yoon, Ki-Sun;Seo, Kunho;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.565-575
    • /
    • 2019
  • This study evaluated Campylobacter jejuni risk in ground meat products. The C. jejuni prevalence in ground meat products was investigated. To develop the predictive model, survival data of C. jejuni were collected at $4^{\circ}C-30^{\circ}C$ during storage, and the data were fitted using the Weibull model. In addition, the storage temperature and time of ground meat products were investigated during distribution. The consumption amount and frequency of ground meat products were investigated by interviewing 1,500 adults. The prevalence, temperature, time, and consumption data were analyzed by @RISK to generate probabilistic distributions. In 224 samples of ground meat products, there were no C. jejuni-contaminated samples. A scenario with a series of probabilistic distributions, a predictive model and a dose-response model was prepared to calculate the probability of illness, and it showed that the probability of foodborne illness caused by C. jejuni per person per day from ground meat products was $5.68{\times}10^{-10}$, which can be considered low risk.

Deposition of Plasma Polymerized Films on Silicon Substrates Using Plasma Assisted CVD Method For Low Dielectric Application

  • Kim, M.C.;S.H. Cho;J.H. Boo;Lee, S.B.;J.G. Han;B.Y. Hong;S.H. Yang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.72-72
    • /
    • 2001
  • Plasma polymerized thin films have been deposited on Si(lOO) substrates at $25-400^{\circ}C$ using thiophene ($C_4H_4S$) precursor by plasma assisted chemical vapor deposition (PACVD) method for low-dielectric device application. In order to compare physical properties of the as-grown thin films, the effects of the plasma power, gas flow ratio and deposition temperature on the dielectric constant and thermal stability were mainly studied. XRD and TED studies revealed that the as-grown thin films have highly oriented amorphous polymer structure. XPS data showed that the polymerized thin films that grown under different RF power and deposition temperature as well as different gas ratio of $Ar:H_2$ have different stoichiometric ratio of C and S compared with that of monomer, indicating a formation of mixture polymers. Moreover, we also realized that oxygen free and thermally stable polymer thin films could be grown at even $400^{\circ}C$. The results of SEM, AFM and TEM showed that the polymer films with smooth surface and sharp interface could be grown under various deposition conditions. From the electrical property measurements such as I-V and C-V characteristics, the minimum dielectric constant and the best leakage current were obtained to be about 3.22 and $10-11{\;}A/\textrm{cm}^2$, respectively.

  • PDF

Temperature dependence of Heteroeptaxial $Y_2O_3$ films grown on Si by ionized cluster beam deposition

  • Cho, M.-H.;Ko, D.-H.;Whangbo, S.W.;Kim, H.B.;Jeong, K.H.;Whang, C.N.;Choi, S.C.;Cho, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.57-77
    • /
    • 1998
  • Heteroepitaxial $Y_2O_3$ films were grown on a Si(111) substrate by ionized cluster beam deposition(ICBD) in ultra high vacuum, and its qualities such as crystllitnity, film stress, and morphological characteristics were investigated using the various measurement methods. The crystallinity was investigated by x-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED). Interface crystallinity was also examined by Rutherford backscattering spectroscopy(RBS) channeling, transmission electron microscopy(TEM). The stress of the films was measured by RBS channeling and XRD. Surface and interface morphological characteristics were investigated by atomic force microscopy (AFM) and x-ray scattering method. Comparing the interface with the surface characteristics, we can conclude that many defects at the interface region were generated by interface reaction between the yttrium metal and SiO2 layer and by ion beam characteristic such as shallow implantation, so that they influenced the film qualities. The film quality was dominantly depended on the characteristic temperature range. In the temperature range from $500^{\circ}C$ to $600^{\circ}C$, the crystallinity was mainly improved and the surface roughness was drastically decreased. On the other hand, in the temperature range from $600^{\circ}C$ to $700^{\circ}C$, the compressive stress and film density were dominantly increased, and the island size was more decreased. Also the surface morphological shape was transformed from elliptical shape to triangular. The film stress existed dominantly at the interface region due to the defects generation.

  • PDF