• Title/Summary/Keyword: C/EBP ${\beta}$

Search Result 79, Processing Time 0.02 seconds

Inhibition of Adipocyte Differentiation by Methanol Extracts of Oenanthe javanica Seed in 3T3-L1 Preadipocytes (돌미나리씨 추출물에 의한 3T3-L1 지방전구세포의 분화 억제)

  • Ji, Hyang Hwa;Jeong, Hyun Young;Jin, Soojung;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1688-1696
    • /
    • 2012
  • Oenanthe javanica has been used as a food source and also in traditional folk medicine for its detoxifying properties and anti-microbial effects since ancient times. In this study, we evaluated the effect and mechanism of O. javanica seed methanol extract (OJSE) on adipocyte differentiation by 3T3-L1 preadipocytes. Under non-toxic conditions, OJSE treatment resulted in a dose-dependent inhibition of lipid droplet generation and triglyceride accumulation by suppressing adipocyte differentiation, which are associated with the decreased expression of key proadipogenic transcription factors including CCAAR/enhancer binding protein ${\alpha}$, ${\beta}$ ($C/EBP{\alpha}$, $C/EBP{\beta}$) and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$). OJSE also significantly inhibited proliferation and differentiation of 3T3-L1 preadipocytes through G1-phase arrest, indicating that OJSE blocked mitotic clonal expansion during adipocyte differentiation. Investigation of the alteration of G1 phase arrest-related proteins indicated a dose-dependent increase in the expression of p21 and reduction in expression of cyclin E, Cdk2, E2F-1 and phospho-Rb by OSJE. Taken together, these results suggest that OJSE inhibits adipocyte differentiation by blocking the mitotic clonal expansion, which is accompanied by preadipocyte cell cycle arrest.

Association of β-Catenin with Fat Accumulation in 3T3-L1 Adipocytes and Human Population (β-catenin 유전자의 3T3-L1 지방세포 및 인체에서의 지방축적 연관성 연구)

  • Bae, Sung-Min;Lee, Hae-Yong;Chae, Soo-Ahn;Oh, Dong-Jin;Park, Suk-Won;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1301-1309
    • /
    • 2011
  • The major function of adipocytes is to store fat in the form of triglycerides. One of the signaling pathways known to affect adipogenesis, i.e. fat formation, is the WNT/${\beta}$-catenin pathway which inhibits the expression and activity of key regulators of adipogenesis. The purpose of this research is to find genes among the WNT/${\beta}$-catenin pathway which regulate adipogenesis by using small interfering (si) RNA and to find the association of single nucleotide polymorphisms (SNPs) of the gene with serum triglyceride levels in the human population. To elucidate the effects of ${\beta}$-catenin siRNA on adipogenesis key factors, PPAR${\gamma}$ and C/EBP${\alpha}$, we performed real-time PCR and western blotting experiments for the analyses of mRNA and protein levels. It was found that the siRNA-mediated knockdown of ${\beta}$-catenin upregulates adipogenesis key factors. However, upstream regulators of the WNT/${\beta}$-catenin pathway, such as DVL2 and LRP6, had no significant effects compared to ${\beta}$-catenin. These results indicate that ${\beta}$-catenin is a candidate gene for human fat accumulation. In general, serum triglyceride level is a good indicator of fat accumulation in humans. According to statistical analyses of the association between serum triglyceride level and SNPs of ${\beta}$-catenin, -10,288 C>T SNP (rs7630377) in the promoter region was significantly associated with serum triglyceride levels (p<0.05) in 290 Korean subjects. On the other hand, serum cholesterol levels were not significantly associated with SNPs of the ${\beta}$-catenin gene. The results of this study showed that ${\beta}$-catenin is associated with fat accumulation both in vitro and in the human population.

β-catenin protein utilized by Tumour necrosis factor-α in porcine preadipocytes to suppress differentiation

  • Luo, Xiao;Li, Hui-Xia;Liu, Rong-Xin;Wu, Zong-Song;Yang, Ying-Juan;Yang, Gong-She
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.338-343
    • /
    • 2009
  • The Wnt/$\beta$-catenin signaling pathway alters adipocyte differentiation by inhibiting adipogenic gene expression. $\beta$-catenin plays a central role in the Wnt/$\beta$-catenin signaling pathway. In this study, we revealed that tumour necrosis factor-$\alpha$ (TNF-$\alpha$), a potential negative regulator of adipocyte differentiation, inhibits porcine adipogenesis through activation of the Wnt/$\beta$-catenin signaling pathway. Under the optimal concentration of TNF-$\alpha$, the intracellular $\beta$-catenin protein was stabilized. Thus, the intracellular lipid accumulation of porcine preadipocyte was suppressed and the expression of important adipocyte marker genes, including peroxisome proliferator-activated receptor-$\gamma$ (PPAR$\gamma$) and CCAAT/enhancer binding protein-$\alpha$ (C/EBP$\alpha$), were inhibited. However, a loss of $\beta$-catenin in porcine preadipocytes enhanced the adipogenic differentiation and attenuated TNF-$\alpha$ induced anti-adipogenesis. Taken together, this study indicated that TNF-$\alpha$ inhibits adipogenesis through stabilization of $\beta$-catenin protein in porcine preadipocytes.

Effects of (6)-gingerol, ginger component on adipocyte development and differentiation in 3T3-L1 (생강 성분인 (6)-Gingerol이 3T3-L1에서 지방세포 증식과 분화 과정에 미치는 영향)

  • Seo, Eun Young
    • Journal of Nutrition and Health
    • /
    • v.48 no.4
    • /
    • pp.327-334
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the effects of (6)-gingerol, ginger components proliferation and adipocyte differentiation from early to lately steps. Methods: 3T3-L1 preadipocytes were cultured. Differentiation of confluent cells was induced with dexamethasone, isobutylxanthin and insulin for 2 day and cells were cultured by medium with insulin in presence of various concentrations 0, 25, 50, $100({\mu}mol/L)$ of (6)-gingerol for 4 day. Cell viability was measured using the EZ Cytox assay kit. In addition, we examined the expression of mRNA levels associated with each adipocyte differentiation step by real time reverse transcription polymerase chain reaction. Results: (6)-Gingerol inhibited adipocyte proliferation in a dose and time dependent manner. Expression of $C/EBP{\beta}$, associated with early differentiation step remained unchaged. However, intermmediate, late differentiation step and adipocytokines were effectively changed in dose-dependently manner in cell groups treated with (6)-gingerol. Conclusion: This study has shown that treatment with (6)-gingerol inhibited adipocyte proliferation as well as each adipocyte differentiation step. In particular, the (6)-gingerol more effectively inhibited adipocyte differentiation from intermmediate differentiation step.

Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes

  • Kang, Nam E;Ha, Ae Wha;Kim, Ji Young;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.6 no.6
    • /
    • pp.499-504
    • /
    • 2012
  • This study attempted to investigate the effects of resveratrol on the differentiation of adipocytes. After cells were treated with various concentrations of resveratrol (0, 10, 20, and 40 ${\mu}mol/L$), adipocyte proliferation, the protein expression of transcription factors, and MMPs' activities were determined. Cell proliferation was inhibited more within 4 days of incubation (P<0.05), and lipid accumulation in adipocyte was significantly inhibited by 93.8%, 92.4% and 91.5%, respectively, after two days of 10, 20, and 40 ${\mu}mol/L$ resveratrol treatment (P<0.05). Six days of incubation with the three resveratrol concentrations caused a significantly decreases of 63%, 59.9%, and 25.1% GPDH activity as a dose-dependent response. The triglyceride concentration also decreased significantly with the increase of resveratrol concentration (P<0.05). The protein expression of CCAAT/enhancer-binding protein (C/$EBP{\beta}$) was decreased significantly by 56% and 30% while $PPAR{\gamma}$ was significantly reduced by 57% and 15% with resveratrol treatments of 20 and 40 ${\mu}mol/L$, respectively (P<0.05). The protein expression of C/$EBP{\alpha}$ was decreased by 83%, 74%, and 38% to increased dosage levels, with significance determined for this decrease from 20 ${\mu}mol/L$ of resveratrol. The protein expression of fatty acid binding protein (FABP4) was decreased significantly by 88%, 72%, and 46% with the increase of resveratrol concentration. The activity of MMP-2 was decreased significantly by 84%, 70%, and 63% while MMP-9 activity was decreased significantly by 74%, 62%, and 39% with the increased resveratrol concentrations of 10, 20, and 40 ${\mu}mol/L$, respectively (P<0.05).

Acer okamotoanum Nakai Leaf Extract Inhibits Adipogenesis Via Suppressing Expression of PPAR γ and C/EBP α in 3T3-L1 Cells

  • Kim, Eun-Joo;Kang, Min-jae;Seo, Yong Bae;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1645-1653
    • /
    • 2018
  • The genus Acer contains several species with various bioactivities including antioxidant, antitumor and anti-inflammatory properties. However, Acer okamotoanum Nakai, one species within this genus has not been fully studied yet. Therefore, in this study, we investigated the anti-adipogenic activities of leaf extract from A. okamotoanum Nakai (LEAO) on 3T3-L1 preadipocytes. Adipogenesis is one of the cell differentiation processes, which converts preadipocytes into mature adipocytes. Nowadays, inhibition of adipogenesis is considered as an effective strategy in the field of anti-obesity research. In this study, we observed that LEAO decreased the accumulation of lipid droplets during adipogenesis and down-regulated the expression of key adipogenic transcription factors such as peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) and CCAAT/enhancer binding protein ${\alpha}$ (C/EBP ${\alpha}$). In addition, LEAO inactivated PI3K/Akt signaling and its downstream factors that promote adipogenesis by inducing the expression of PPAR ${\gamma}$. LEAO also activated ${\beta}$-catenin signaling, which prevents the adipogenic program by suppressing the expression of PPAR ${\gamma}$. Therefore, we found that treatment with LEAO is effective for attenuating adipogenesis in 3T3-L1 cells. Consequently, these findings suggest that LEAO has the potential to be used as a therapeutic agent for preventing obesity.

Widdrol Blocks 3T3-L1 Preadipocytes Growth and Differentiation Due to Inhibition of Mitotic Clonal Expansion

  • Yun, Hee-Jung;Kim, Jeong-Hwan;Jeong, Hyun-Young;Ji, Hyang-Hwa;Nam, Soo-Wan;Lee, Eun-Woo;Kim, Byung-Woo;Kwon, Hyun-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.806-813
    • /
    • 2012
  • Adipocyte differentiation is strongly associated with obesity, which causes metabolic disorders. In this study, we investigated the inhibitory effects of widdrol on 3T3-L1 preadipocyte growth and differentiation. Widdrol decreased lipid droplet accumulation and down-regulated adipogenic transcription factors such as C/$EBP{\alpha}$, C/$EBP{\beta}$, and $PPAR{\gamma}$. Widdrol blocked preadipocyte proliferation and differentiation through the inhibition of mitotic clonal expansion, which was accompanied by the failure of degradation of p21, a cyclin-dependent kinase inhibitor. Cell-cycle analysis clearly indicated that widdrol actively induces cell-cycle arrest at the G1-S phage transition, causing cells to remain in the preadipocyte state. Moreover, widdrol increased p21 expression and inhibited Rb phosphorylation in preadipocyte incubated in a hormone medium. Therefore, these findings clearly suggest that widdrol blocks preadipocyte growth and differentiation through the inhibition of mitotic clonal expansion by p21-and Rb-dependent G1 arrest and can be developed as a potent anti-adipogenic agent for reducing obesity.

Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Nogoy, Kim Margarette Corpuz;Sun, Jianfu;Sun, Bin;Wang, Ying;Tang, Lin;Yu, Jia;Jin, Xin;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.919-933
    • /
    • 2021
  • We hypothesized that the unsaturated fatty acid palmitoleic acid (POA) could promote the expression of adipogenic/lipogenic genes in bovine skeletal muscle satellite cells (BSCs). The BSCs were cultured in a growth medium containing 10% fetal bovine serum. When the cells reached 80%-90% confluence, we used the differentiation medium with 5% horse serum for differentiation for 96 h. The differentiation medium contained 50 µM, 100 µM and 200 µM POA. Control BSC were cultured only in differentiation media. Compared with the control BSC, the POA BSC significantly up-regulated the expression of paired box 3 (Pax3) and paired box 7 (Pax7) and down-regulated myogenin gene expression (p < 0.01), which indicates a depression in muscle fiber development. However, all POA treatments up-regulated the expression of the adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha and beta (C/EBP α and C/EBP β), and other genes (p < 0.01) and increased the expression of PAT-family proteins and the concentration of adiponectin in the media. These results indicate that POA can convert part of BSCs into adipocytes.

Inhibition of NF-IL6 Activity by Manassantin B, a Dilignan Isolated from Saururus chinensis, in Phorbol Myristate Acetate-stimulated U937 Promonocytic Cells

  • Son, Kyung-No;Song, In-Sung;Shin, Yong-Hyun;Pai, Tong-Kun;Chung, Dae-Kyun;Baek, Nam-In;Lee, Jung Joon;Kim, Jiyoung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.105-111
    • /
    • 2005
  • Mannasantin B, a dilignan structurally related to manssantin A, is an inhibitor of NF-${\kappa}B$ transactivation. In the present study, we found that it inhibited PMA-induced expression of IL-$1{\beta}$, IL-$1{\beta}$ mRNA, and IL-$1{\beta}$ promoter activity in U937 cells with $IC_{50}$ values of about 50 nM. It also inhibited NF-IL6- and NF-${\kappa}B$-induced activation of IL-$1{\beta}$, with $IC_{50}$ values of 78 nM and $1.6{\mu}M$, respectively, revealing a potent inhibitory effect on NF-IL6. Electrophoretic mobility shift assays showed that manassantin B had an inhibitory effect on DNA binding by NF-IL6, but not by NF-${\kappa}B$. Further analysis revealed that transactivation by NF-IL6 was also inhibited. Our results indicate that manassantin B suppresses expression of IL-$1{\beta}$ in promonocytic cells by inhibiting not only NF-${\kappa}B$ but also NF-IL6 activity. Furthermore, our observations suggest that manassantin B may be clinically useful as a potent inhibitor of NF-IL6 activity.

Inhibitory Effects of Illicium verum Hooker fil. Dichloromethane Fractions on Adipocyte Differentiation (팔각회향 dichloromethane 분획물에 의한 지방세포 분화 억제 효과)

  • Jeong, Hyun Young;Jeong, In Kyo;Kim, Nam Ju;Yun, Hee Jung;Park, Jung Ha;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.447-454
    • /
    • 2019
  • Fat accumulation in adipocytes occurs through the process of adipogenesis in which preadipocytes differentiate into adipocytes. Obesity is a metabolic disorder caused by excessive accumulation of fat in the body, which increases the incidence of cardiovascular diseases, hypertension, type 2 diabetes, hyperlipidemia, and various cancers. Recently, inhibition of adipocyte differentiation was shown to be a potential antiobesity strategy. In this study, the inhibitory effect of dichloromethane fractions from Illicium verum Hooker fil. water extract on the differentiation of 3T3-L1 preadipocytes to adipocytes was investigated. Dichloromethane fractions from I. verum Hooker fil. significantly inhibited adipocyte differentiation when applied during the adipocyte differentiation process, as assessed by measuring fat accumulation using Oil-red O staining. In addition, dichloromethane fractions from I. verum Hooker fil. reduced important adipogenic transcription factors, such as CCAAT/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$). The expression of FAS and LPL, which are terminal differentiation markers of mature adipocytes, was also reduced in the 3T3-L1 adipocytes treated with dichloromethane fractions from I. verum Hooker fil. In addition, the treatment significantly inhibited mitotic clonal expansion, which is essential for adipocyte differentiation, by arresting the G1 phase of the cell cycle. Taken together, these results suggest that dichloromethane fractions from I. verum Hooker fil. may be a natural material with antiobesity effects.