Browse > Article
http://dx.doi.org/10.5187/jast.2021.e78

Effect of palmitoleic acid on the differentiation of bovine skeletal muscle satellite cells  

Zhang, Junfang (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Li, Qiang (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Nogoy, Kim Margarette Corpuz (Department of Animal Science, Chungbuk National University)
Sun, Jianfu (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Sun, Bin (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Wang, Ying (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Tang, Lin (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Yu, Jia (Department of Animal Science, Chungbuk National University)
Jin, Xin (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Li, Xiangzi (Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University)
Choi, Seong-Ho (Department of Animal Science, Chungbuk National University)
Publication Information
Journal of Animal Science and Technology / v.63, no.4, 2021 , pp. 919-933 More about this Journal
Abstract
We hypothesized that the unsaturated fatty acid palmitoleic acid (POA) could promote the expression of adipogenic/lipogenic genes in bovine skeletal muscle satellite cells (BSCs). The BSCs were cultured in a growth medium containing 10% fetal bovine serum. When the cells reached 80%-90% confluence, we used the differentiation medium with 5% horse serum for differentiation for 96 h. The differentiation medium contained 50 µM, 100 µM and 200 µM POA. Control BSC were cultured only in differentiation media. Compared with the control BSC, the POA BSC significantly up-regulated the expression of paired box 3 (Pax3) and paired box 7 (Pax7) and down-regulated myogenin gene expression (p < 0.01), which indicates a depression in muscle fiber development. However, all POA treatments up-regulated the expression of the adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein alpha and beta (C/EBP α and C/EBP β), and other genes (p < 0.01) and increased the expression of PAT-family proteins and the concentration of adiponectin in the media. These results indicate that POA can convert part of BSCs into adipocytes.
Keywords
Adipocytes; Palmitoleic acid; Satellite cells; Bovine; Muscle; Marbling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Teboul L, Gaillard D, Staccini L, Inadera H, Amri EZ, Grimaldi PA. Thiazolidinediones and fatty acids convert myogenic cells into adipose-like cells. J Biol Chem. 1995;270:28183-7. https://doi.org/10.1074/jbc.270.47.28183   DOI
2 Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res. 1997;38:2249-63. https://doi.org/10.1016/S0022-2275(20)34939-7   DOI
3 Christiaens V, Van Hul M, Lijnen HR, Scroyen I. CD36 promotes adipocyte differentiation and adipogenesis. Biochim Biophys Acta. 2012;1820:949-56. https://doi.org/10.1016/j.bbagen.2012.04.001   DOI
4 Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, et al. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab. 2002;283:E775-83. https://doi.org/10.1152/ajpendo.00040.2002   DOI
5 Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473-6. https://doi.org/10.1161/01.cir.100.25.2473   DOI
6 Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes. 2004;53 Suppl :S143-51. https://doi.org/10.2337/diabetes.53.2007.s143   DOI
7 Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999;277:E1130-41. https://doi.org/10.1152/ajpendo.1999.277.6.E1130   DOI
8 Choi SH, Chung KY, Johnson BJ, Go GW, Kim KH, Choi CW, et al. Co-culture of bovine muscle satellite cells with preadipocytes increases PPARγ and C/EBPβ gene expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. J Nutr Biochem. 2013;24:539-43. https://doi.org/10.1016/j.jnutbio.2012.01.015   DOI
9 Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C. Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem. 1991;266:11341-6. https://doi.org/10.1016/S0021-9258(18)99168-4   DOI
10 Wolins NE, Brasaemle DL, Bickel PE. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 2006;580:5484-91. https://doi.org/10.1016/j.febslet.2006.08.040   DOI
11 Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947-53. https://doi.org/10.1038/90992   DOI
12 Tontonoz P, Hu E, Spiegelman BM. Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor γ. Curr Opin Genet Dev. 1995;5:571-6. https://doi.org/10.1016/0959-437x(95)80025-5   DOI
13 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941-6. https://doi.org/10.1038/90984   DOI
14 Luiken JJ, Chanda D, Nabben M, Neumann D, Glatz JF. Post-translational modifications of CD36 (SR-B2): implications for regulation of myocellular fatty acid uptake. Biochim Biophys Acta. 2016;1862:2253-8. https://doi.org/10.1016/j.bbadis.2016.09.004   DOI
15 Brooks M, Choi C, Lunt D, Miller R, Choi C, Smith S. Case study: carcass and meat characteristics and M. longissimus thoracis histology of beef from calf-fed and yearling-fed Angus steers. Prof Anim Sci. 2011;27:385-93. https://doi.org/10.15232/S1080-7446(15)30503-9   DOI
16 Garmyn AJ, Hilton GG, Mateescu RG, Morgan JB, Reecy JM, Tait RG Jr., et al. Estimation of relationships between mineral concentration and fatty acid composition of longissimus muscle and beef palatability traits. J Anim Sci. 2011;89:2849-58. https://doi.org/10.2527/jas.2010-3497   DOI
17 Li XZ, Yan Y, Zhang JF, Sun JF, Sun B, Yan CG, et al. Oleic acid in the absence of a PPARγ agonist increases adipogenic gene expression in bovine muscle satellite cells1. J Anim Sci. 2019;97:4114-23. https://doi.org/10.1093/jas/skz269   DOI
18 Hollenberg AN, Susulic VS, Madura JP, Zhang B, Moller DE, Tontonoz P, et al. Functional antagonism between CCAAT/Enhancer binding protein-α and peroxisome proliferator-activated receptor-gamma on the leptin promoter. J Biol Chem. 1997;272:5283-90. https://doi.org/10.1074/jbc.272.8.5283   DOI
19 Kadegowda AKG, Burns TA, Pratt SL, Duckett SK. Inhibition of stearoyl-CoA desaturase 1 reduces lipogenesis in primary bovine adipocytes. Lipids. 2013;48:967-76. https://doi.org/10.1007/s11745-013-3823-1   DOI
20 Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005;122:289-301. https://doi.org/10.1016/j.cell.2005.05.010   DOI
21 Csete M, Walikonis J, Slawny N, Wei Y, Korsnes S, Doyle JC, et al. Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol. 2001;189:189-96. https://doi.org/10.1002/jcp.10016   DOI
22 Satory DL, Smith SB. Conjugated linoleic acid inhibits proliferation but stimulates lipid filling of murine 3T3-L1 preadipocytes. J Nutr. 1999;129:92-7. https://doi.org/10.1093/jn/129.1.92   DOI
23 Kook SH, Choi KC, Son YO, Lee KY, Hwang IH, Lee HJ, et al. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol Cells. 2006;22:239-45.
24 Cassar-Malek I, Langlois N, Picard B, Geay Y. Regulation of bovine satellite cell proliferation and differentiation by insulin and triiodothyronine. Domest Anim Endocrinol. 1999;17:373-88. https://doi.org/10.1016/s0739-7240(99)00055-7   DOI
25 Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand. 2005;184:285-93. https://doi.org/10.1111/j.1365-201X.2005.01468.x   DOI
26 Kim E, Lee JH, Ntambi JM, Hyun CK. Inhibition of stearoyl-CoA desaturase1 activates AMPK and exhibits beneficial lipid metabolic effects in vitro. Eur J Pharmacol. 2011;672:38-44. https://doi.org/10.1016/j.ejphar.2011.09.172   DOI
27 Bijland S, Mancini SJ, Salt IP. Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci. 2013;124:491-507. https://doi.org/10.1042/cs20120536   DOI
28 Seale P, Rudnicki MA. A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Dev Biol. 2000;218:115-24. https://doi.org/10.1006/dbio.1999.9565   DOI
29 Han RH, Wang M, Fang X, Han X. Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis. J Lipid Res. 2013;54:1023-32. https://doi.org/10.1194/jlr.M033837   DOI
30 Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci. 2004;117:5393-404. https://doi.org/10.1242/jcs.01419   DOI
31 Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999;13:2051-60. https://doi.org/10.1096/fasebj.13.14.2051   DOI
32 Choi SH, Park SK, Johnson BJ, Chung KY, Choi CW, Kim KH, et al. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD gene expression in single- and co-cultured bovine satellite cells and intramuscular preadipocytes treated with palmitic, stearic, oleic, and linoleic acid. Asian-australas J Anim Sci. 2015;28:411-9. https://doi.org/10.5713/ajas.14.0598   DOI
33 Thiam AR, Farese RV, Jr., Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biology. 2013;14:775-86. https://doi.org/10.1038/nrm3699   DOI
34 Deutsch MJ, Schriever SC, Roscher AA, Ensenauer R. Digital image analysis approach for lipid droplet size quantitation of Oil Red O-stained cultured cells. Anal Biochem. 2014;445:87-9. https://doi.org/10.1016/j.ab.2013.10.001   DOI
35 Fernandez-Veledo S, Vazquez-Carballo A, Vila-Bedmar R, Ceperuelo-Mallafre V, Vendrell J. Role of energy- and nutrient-sensing kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in adipocyte differentiation. IUBMB Life. 2013;65:572-83. https://doi.org/10.1002/iub.1170   DOI
36 Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Nati Acad Sci USA. 2002;99:15983-7. https://doi.org/10.1073/pnas.252625599   DOI
37 Bonen A, Parolin ML, Steinberg GR, Calles-Escandon J, Tandon NN, Glatz JF, et al. Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J. 2004;18:1144-6. https://doi.org/10.1096/fj.03-1065fje   DOI
38 Kelley DE, Reilly JP, Veneman T, Mandarino LJ. Effects of insulin on skeletal muscle glucose storage, oxidation, and glycolysis in humans. Am J Physiol. 1990;258:E923-9. https://doi.org/10.1152/ajpendo.1990.258.6.E923   DOI
39 Chung KY, Johnson BJ. Melengestrol acetate enhances adipogenic gene expression in cultured muscle-derived cells. J Anim Sci. 2009;87:3897-904. https://doi.org/10.2527/jas.2008-1645   DOI
40 Bickel PE, Tansey JT, Welte MA. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta. 2009;1791:419-40. https://doi.org/10.1016/j.bbalip.2009.04.002   DOI
41 Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tiss Res. 1998;294:309-21. https://doi.org/10.1007/s004410051181   DOI
42 Hardie DG, Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem. 1997;246:259-73. https://doi.org/10.1111/j.1432-1033.1997.00259.x   DOI
43 Ladeira MM, Schoonmaker JP, Swanson KC, Duckett SK, Gionbelli MP, Rodrigues LM, et al. Review: nutrigenomics of marbling and fatty acid profile in ruminant meat. Animal. 2018;12:s282-94. https://doi.org/10.1017/s1751731118001933   DOI
44 Baik M, Kang HJ, Park SJ, Na SW, Piao M, Kim SY, et al. Triennial Growth and Development Symposium: molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J Anim Sci. 2017;95:2284-303. https://doi.org/10.2527/jas.2016.1160   DOI
45 Chen J, Liu M, Li Z. The fractal dimension research of chinese and american beef marbling standards images. In: Proceedings of the International Conference on Computer & Computing Technologies in Agriculture; 2012 Oct 19-21; Zhangjiajie, China.
46 Hocquette JF, Gondret F, Baeza E, Medale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal. 2010;4:303-19. https://doi.org/10.1017/s1751731109991091   DOI
47 Mach N, Bach A, Realini CE, Font IFM, Velarde A, Devant M. Burdizzo pre-pubertal castration effects on performance, behaviour, carcass characteristics, and meat quality of Holstein bulls fed high-concentrate diets. Meat Sci. 2009;81:329-34. https://doi.org/10.1016/j.meatsci.2008.08.007   DOI
48 Moody WG, Cassens RG. A quantitative and morphological study of bovine longissimus fat cells. J Food Sci. 1968;33:47-52. https://doi.org/10.1111/j.1365-2621.1968.tb00882.x   DOI
49 Smith SB, Lunt DK. Marbling: management of cattle to maximize the deposition of intramuscular adipose tissue. In: Proceedings of the Plains Nutrition Council Spring Conference; 2007; 2007 Mar 29-30; San Antonio, Tx.
50 Xu J, Liu D, Yin H, Tong H, Li S, Yan Y. Fatty acids promote bovine skeletal muscle satellite cell differentiation by regulating ELOVL3 expression. Cell Tissue Res. 2018;373:499-508. https://doi.org/10.1007/s00441-018-2812-3   DOI