• Title/Summary/Keyword: Bypass control

Search Result 257, Processing Time 0.024 seconds

An Experimental Study on the Performance Characteristics of Hot-gas and Liquid Bypass Heat Pump Systems for Capacity Modulation (고온가스 및 액체 바이패스 적용 용량가변 히트펌프의 성능특성에 관한 실험적 연구)

  • Ahn, Jae Hwan;Joo, Youngju;Yoon, Won Jae;Kang, Hoon;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.137-142
    • /
    • 2013
  • A small air-conditioner or chiller for a constant temperature bath normally uses a constant speed compressor. The constant speed compressor is relatively inexpensive, but it uses on/off control for capacity modulation. The on/off control has several disadvantages, specifically energy loss and large temperature fluctuation. Continuous operation with a bypass system can be an alternative to on/off control, for capacity modulation. In this study, a heat pump system having a hot-gas bypass and a liquid bypass was adopted. The performance of the bypass-type heat pump was measured, by varying the bypass valve opening. The differences of the COP between the hot-gas bypass and the liquid bypass, in the cooling and heating operations, were within 2% and 1%, respectively. The liquid bypass showed a wider range of capacity control in the cooling operation but the hot-gas bypass showed a wider range of capacity control in the heating operation.

The Characteristics of a Bypass Air Conditioning System for Load Variation (부하변동에 대한 바이패스 공조시스템의 특성)

  • 김보철;신현준;김정엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Bypass air conditioning systems are divided into three types; an outdoor air bypass, a mixed air bypass and a return air bypass system. What makes the return air by pass system more effective is that it directs all of moist outdoor air through the cooling coil. The bypass air conditioning system can maintain indoor R.H (Relative Humidity) less than a conventional CAV (Constant Air Volume) air conditioning system by adjusting face and bypass dampers at part load. When a design sensible load (the ratio of sensible load to total sensible load) is 70 percent (at this time, RSHF (Room Sensible Heat Factor) . 0.7), indoor R.H was maintained 59 percent by the return air bypass system, but 65 percent by the conventional CAV air conditioning system (valve control system). The bypass air conditioning system can also improve IAQ (Indoor Air Quality) in many buildings where the number of air change is high.

Development of a High Pressure Turbine Bypass System Pressure Control Model for Power Plant Simulator (발전소 시뮬레이터를 위한 고압 터빈 바이패스 압력 제어 모델 개발)

  • Byun, Seung-Hyun;Lee, Joo-Hyun;Lim, Ick-Hun
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • It is required that a developed control system should be verified using simulator in terms of functionality and reliability prior to application to a power plant that is a very critical facility in the industry. In this paper, the control model for turbine bypass system was developed for power plant simulator. In order to develop the control model for turbine bypass system, the tool that can be used to implement turbine bypass control logic was developed based on the turbine bypass control system manual. The developed tool was merged into the simulator development environment. The functionality of the developed tool was verified via the simulation based on the each function block specification. The HP turbine bypass pressure control logic was implemented using the developed tool and was integrated with process models and other control models such as boiler control model, turbine control model and boiler feed water pump turbine control model for 500 MW korean standard type fossil power plant. Finally, the validity of the developed control model was shown via simulation result under the integrated simulation environment.

Characteristics of On-off Control and Hot-Gas Bypass Control in an Industrial Cooler (산업용 냉각기의 온오프 제어와 토출가스 바이패스 제어 특성 비교)

  • Baek, Seung-Moon;Moon, Choon-Geun;Kim, Eun-Pil;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.429-435
    • /
    • 2011
  • In this study the operational characteristics of the temperature control system between an on-offemployed cooler and a bypass type cooler is analyzed. Currently an on-off controller employed coolerwhich is the industry's leading type on the market for industrial coolers is used. The new type cooler isused a bypass controller at discharge gas. The COP of the bypass controlled cooler with discharge gas is at least 8% higher than the on-off controlled cooler. The maximum COP difference is about 20%. Based on the results, the bypass control with discharge gas shows the possible temperature control with high precision.

Effectiveness Analysis on the Installation of Right-Turn Bypass Lane in Roundabout (회전교차로 우회전 별도차로 설치 효과 검토)

  • Lim, Jin-Kang;Kim, Kyung-Hwan;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.29-37
    • /
    • 2010
  • This study deals with the Right-Turn Bypass Lane in Roundabout. The purpose of the study is to comparatively analysis the effectiveness questions on the installation of right-turn bypass lane in roundabout. In pursuing the above, this study analyzed after and before of the right turn bypass lane plan by VISSIM software. The right turn bypass lane is formed by control type of yield and control type of joint were compared and analyzed the effects of the operation. The main results analyzed are as follows. First, after Right-Turn Bypass Lane is Installed, the traffic volume rate of the right-turn increasing by average delay time per vehicle is on the gradual decrease, maximum average about 28% with the fact that decreases. Second, control type of yield and control type of joint are both average delay time per vehicle decreasing by the traffic volume rate of the right-turn is on the gradual increase. Control type of joint was analyzed with the fact that has the maximum average about 18% delay decrement efficiency.

A Study on High Precision Temperature Control of an Oil Cooler for Machine Tools Using Hot-gas Bypass Method

  • Jung, Young-Mi;Byun, Jong-Yeong;Yoon, Jung-In;Jeong, Seok-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1003-1011
    • /
    • 2009
  • This study aims at precise control of oil outlet temperature in the oil cooler system of machine tools for enhancement of working speed and processing accuracy. PID control logic is adopted to obtain desired oil outlet temperature of the oil cooler system with hot-gas bypass method. We showed that the gains of PID controller could be easily determined by using gain tuning methods to get the gain of PID controller without any mathematical model. We also investigated various gain tuning methods to design the gains of PID and compared each control performance for selecting the optimal tuning method on the hot gas bypass method through experiments. Moreover, we confirmed excellent control performance with proposed PI controller gain even though disturbances were abruptly added to the experimental system.

The Analog-circuited Low-loss Bypass Current Sensing Method for Average Current Mode Control (아날로그 회로로 구현가능한 평균전류제어 저손실 bypass 전류센싱방법)

  • Kim, Seok-Hee;Choi, Byung-Min;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.133-138
    • /
    • 2014
  • This paper proposes a low power-loss averaging current mode control using a resistor and bypass switch. Generally, current sensing method using a resistor has a disadvantage of power loss which degrades the efficiency of the entire systems. On the other hand, proposed measurement technique operating with bypass-switch connected in parallel with sensing resistor can reduce power loss significantly the current sensor. An analog-circuited bypass driver is implemented and used along with an average-circuit mode controller. The bypass switch bypasses the sensing current with a small amount of power loss. In this paper, a 50[W] prototype average current mode boost converter has been implemented for the experimental verification.

Analysis of flow Field in a steam turbine LP/HP Bypass control Valve (증기터빈 Bypass Valve 의 유동장 해석)

  • Choi, Ji-Yong;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.437-440
    • /
    • 2005
  • In the present work, characteristics of the flow in CAGE of a steam turbine LP/HP Bypass control valve for thermal power plant are investigated. The flow field is analyzed numerically by solving steady three-dimensional Reynolds-averaged Navier-Stokes equations. Shear stress transport (SST) model is used as turbulence closure.

  • PDF

Temperature Control of Oil Cooler with Hot-gas Bypass (토출가스 바이패스제어에 의한 산업용 냉각기의 온도제어)

  • Byun, Jong-Yeong;Joo, Woo-Jin;Choi, Jun-Hyuk;Moon, Choon-Geun;Yoon, Jung-In;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.961-966
    • /
    • 2009
  • This paper presents precise temperature control of oil outlet in an oil cooler with hot-gas bypass control as an industrial refrigerator. The control system was designed for obtaining precise temperature control performance even though abrupt disturbances based on flow rate control of hot-gas bypass. PID controller was adopted in feedback control system. We showed that the gain of PID could be easily determined by using gain-tuning methods without any numerical model. Through some experiments, excellent control performances such as overshoot within 1.7%, steady state temperature error within ${\pm}0.1^{\circ}C$ were established by a simple PI controller. We expect that the system can control the target temperature within error of $0.33^{\circ}C$ under abrupt disturbances.

  • PDF

A Comparison of Operating Characteristics for Industrial Water Cooler with Variation of Control Methods (제어방식에 따른 산업용 수냉각기의 운전 특성 비교)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a comparison of operating characteristics for industrial water cooler with variation control methods. The performance analysis regarding the characteristics of condensation capacity, evaporation capacity, compressor load, COP of an on-off type cooler, a hot gas-bypass control type cooler and an inverter control type cooler with respect to the system load is reviewed, respectively. The primary results are as following: the variation of required compressor load of an on-off type cooler with respect to load is 5%, that of hot gas-bypass type is 18% and 66% for an inverter control type cooler. As the result shows, an inverter control type yields relatively huge difference of required compressor load compared to other types of control system. In terms of partial load, COP of an inverter control type cooler presents the highest value, and is considered as the optimized type for the used of the system involving frequent partial load.