• Title/Summary/Keyword: Butyl-PBD

Search Result 11, Processing Time 0.035 seconds

Characteristics of OLED by co-evaporation methode (Co-evaporation methode에 의한 OLED의 발광 특성)

  • Lee, Jung-Tae;Na, Sun-Woong;Shin, Kyung;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1046-1049
    • /
    • 2002
  • In this study, We fabricated Organic Electroluminescence device, in order to improve the efficiency of Blue OLED in the full-color OLED. We made two sample. Sample A is that We used TPD(N,N‘-bis(3-methylphenyl)-N,N'-diphenylbenzidine} as hole transport layer(HTL), and Butyl-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) as emitting material layer(EML) and Alq3(8-Hydroxyquinoline, aluminum} as electron transport layer(ETL). Sample B is that we used TPD(N, N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine} as HTL and co-evaporated Butyl-PBD and Alq3 as EML. We investigated the characteristic of brightness and current-:voltage. The sample B that co-evaporated Butyl-PBD and Alq3 as EML improved characteristic of brightness and current-voltage than sample A. Maximum luminescence of sample B is $310cd/m^2$ and threshold voltage is 7V.

  • PDF

Characteristics of blue organic EL devices as thickness ratio (청색 유기 EL 소자의 두께비에 따른 발광 특성)

  • 손철호;나선웅;여철호;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.648-651
    • /
    • 2001
  • We studied about luminance characteristics of blue organic electroluminecent device as thickness ratio. The device is fabricated TPD(N,N'-dyphenyl-N-N'-bis(3-methyphenyl) -1,1'-biphenyl-4,4'-diamine) as hole transport layer and Butyl -PBD(1,1,4,4-Tetraphenyl-1,3-butadiene) as emission layer and electron transport layer. Total thickness is 1000${\AA}$ as HTL and ETL, each devices has 500${\AA}$:500${\AA}$. 400${\AA}$:600${\AA}$ and 600${\AA}$:400${\AA}$ of TPD : Butyl-PBD. We obtained the maximum brightness about 175cd/㎡ 500${\AA}$: 500${\AA}$ thickness devices as HTL:ETL

  • PDF

Synthesis and Effect on t-Butyl PBD of the Blue Light Emitting Poly(phenyl-9,9-dioctyl-9',9'-dihexanenitrile) fluorene

  • Kim Byong-Su;Kim Chung-Gi;Oh Jea-Jin;Kim Min-Sook;Kim Gi-Won;Park Dong-Kyu;Woo Hyung-Suk
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.343-347
    • /
    • 2006
  • A novel, blue light-emitting polymer, poly(phenyl-9,9-dioctyl-9',9'dihexanenitrile)fluorene (PPFC6N), containing an alkyl and cyano group in the side chain, was synthesized by Suzuki polymerization and characterized. The polymer structure was confirmed by $^1H-NMR$. The number average molecular weight and the weight average molecular weight of the obtained polymer were 9,725 and 9,943 respectively. The resulting polymer was thermally stable with a glass transition temperature ($T_g$) of $93^{\circ}C$, and was easily soluble in common organic solvents such as THF, toluene, chlorobenzene and chloroform. The HOMO and LUMO energy levels of the polymer were revealed as 5.8 and 2.88 eV by cyclic voltammetry study, respectively. The ITO/PEDOT:PSS (40 nm)/PPFC6N (80 m)/LiF (1 nm)/Al (150 nm) device fabricated from the polymer emitted a PL spectrum at 450 nm and showed a real blue emission for pure PPFC6N in the EL spectrum. When t-butyl PBD was introduced as a hole blocking layer, the device performance was largely improved and the EL spectrum was slightly shifted toward deep blue. The device with PPFC6N containing t-butyl PBD layer showed the maximum luminance of 3,200 $cd/m^2$ at 9.5 V with a turnon voltage of 7 V.

Electro-optical properties of organic thin film EL device using PPV (PPV를 이용한 유기 박막 EL 소자의 전기-광학적특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.97-102
    • /
    • 1998
  • Organic thin film EL devices using PPV(poly (p-phenylenevinylene)) as emitter were fabricated on various conditions and structures, their electro-optical properties were estimated. Fabricated EL devices had structures of single layer(ITO(indium tin oxide)/PPV/Mg), double layer(ITO/PVK(poly(N-vinylcarbazole))/PPV/Mg and ITO/PPV/Polymer matrix + PBD/Mg) and three layer (ITO/PVK/PPV/PS(polystyrene)+PBD(butyl-2-(4-bipheny])-5-(4-tert-butylphenyl-1,3,4-oxadiazole))/Mg), their electro-optical characteristics were compared with each other. In structure of double layer (ITO/PPV /Polymer matrix + PBD/Mg), the used polymer-matrices were PMMA(poly(methyl methacrylate), PC(polycarbonate), PS and MCH(side chain liquid crystalline homopolymer). When PS as a hole transport layer was used, the luminance characteristics on concentration of PBD was obtained. In results, current-voltage-luminance curves of fabricated devices had characteristics of tunneling effect and the device showed a stable light emitting.

  • PDF

Degradation effects of blue organic electroluminescence devices (청색 유기 EL 소자의 열화현상에 대한 연구)

  • Na, Sun-woong;Son, Chul-ho;Shin, Kyung;Lee, Young-jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.943-946
    • /
    • 2001
  • In this study, We have investigated degradation effects of blue organic electroluminescence devices that was consisted of TPD(N,N'-dyphenyl-N-N\`-bis(3-methyphenyl) as hole transport layer and Butyl-PBD (2- (4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole)-as emission layer and electron transport layer. We have studied characteristics of brightness and current density about blue OEL that was degradated layer. Two kinds of samples that were fabricated each continuous and non-continuous method was used.

  • PDF

Enhanced efficiency of organic light-emitting diodes by doping the electrontransport layer

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1410-1412
    • /
    • 2005
  • We present that the electroluminescence (EL) efficiency can be improved by doping an electron transport layer (ETL) with organic materials which can make electron current increase. The electron transport layer of aluminum tris(8 -hydroxyquinoline) (Alq3) is doped with 2-(4-Biphenylyl)-5-(4-tertbutylphenyl)- 1,3,4-oxadiazole) (butyl-PBD) to enhance the electron mobility of the ETL. The higher quantum efficiency of device having ETL using Alq3 doped with butyl-PBD can be attributed to the improved electron and hole balance.

  • PDF

Characteristics of matrix OEL devices that fabricated by side-by-side methode (side by side 방법으로 제작한 matrix 유기 발광 소자의 발광특성)

  • Son, Chul-Ho;Yeo, Cheol-Ho;Shin, Kyung;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.366-369
    • /
    • 2001
  • In this study, the matrix Organic Electroluminescence (OEL) device, that was consisted of R,G,B pixels. We fabricated OEL devices by side by side methode and, used organic material Alq3 as green, DCM as red and Butyl PBD as blue ETL. We investigated the characteristic of brightness and current density for matrix OEL device. As the results, each color devices has minimum about $100cd/m^{2}$ brightness and maximum luminescence was $2500cd/m^2$ in green OEL device.

  • PDF

Characteristics of matrix OEL devices that fabricated by side-by-side methode (side by side 방법으로 제작한 matrix 유기 발광 소자의 발광특성)

  • Son, Chul-Ho;Yeo, Cheol-Ho;Shin, Kyung;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.366-369
    • /
    • 2001
  • In this study, the matrix Organic Electroluminescence (OEL) device, that was consisted of R,G,B pixels. We fabricated OEL devices by side by side methode and, used organic material Alq3 as green, DCM as red and Butyl PBD as blue ETL. We investigated the characteristic of brightness and current density for matrix OEL device. As the results, each color devices has minimum about 100 cd/㎡ brightness and maximum luminescence was 2500cd/㎡ in green OEL device

  • PDF

Fabrication and characteristics for the organic light emitting device from single layer poly(N-vinylcarbazole) (단층 poly(N-vinylcarbazole) 유기물 전기발광 소자의 제작 및 특성)

  • 윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.55-61
    • /
    • 1998
  • Organic light emitting devices from a single layer thin film with a hole transport polymer, poly(N-vinylcarbazole) (PVK) doped with 2-(4-bi phenyl)-5-(4-t-butyl-phenyl) -1,3,4-oxadiazole (Bu-PBD) as electron transporting molecules and Coumurine 6(C6), 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), Rhodamine B as a emitter dye were fabricated. The sing1e layer structure and the use of soluble materials simplify the fabrication of devices by spin coating technique. The active layer consists of one polymer layer that is simply sandwiched between two electrodes, indium-tin oxide (ITO), and aluminum. In this structure, electron and hole inject from the electrodes to the PVK : Bu-PBD active layer. Respectively, Blue, green and orange colored emission spectrum by the use of TPB, C6, Rhodamine B dye emitted at 481nm, 500nm and 585nm were achieved during applied voltages. PVK materials can be useful as the host polymer to be molecularly doped with other organic dyes of the different luminescence colors. And EL color can be tuned to the full visible wavelength.

  • PDF

Synthesis and microphase-separated structures of rod-coil triblock polymers

  • Uchida, Satoshi;Tanimura, Kotaro;Ishizu, Koji
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.326-326
    • /
    • 2006
  • The combination of living anionic and coordination polymerization techniques enabled to synthesize the polystyrene-b-polyisoprene-b-poly (butyl isocyanate) triblock polymers. Their microphase-separated structures were zig-zag structures for high ${\phi}_{PIC}$ samples, and hockey-puck structures were also observed. The phase diagram for PSt-b-PIp-b-PIC rod-coil polymers was different from that for PS-PBd-PMMA triblock polymers, and it was found that ${\phi}_{PIC}$ was the important factor to determine the microphase-separated structures.

  • PDF