• Title/Summary/Keyword: Business Performance Prediction

Search Result 266, Processing Time 0.024 seconds

Exploring the Prediction of Timely Stocking in Purchasing Process Using Process Mining and Deep Learning (프로세스 마이닝과 딥러닝을 활용한 구매 프로세스의 적기 입고 예측에 관한 연구)

  • Youngsik Kang;Hyunwoo Lee;Byoungsoo Kim
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.25-41
    • /
    • 2018
  • Applying predictive analytics to enterprise processes is an effective way to reduce operation costs and enhance productivity. Accordingly, the ability to predict business processes and performance indicators are regarded as a core capability. Recently, several works have predicted processes using deep learning in the form of recurrent neural networks (RNN). In particular, the approach of predicting the next step of activity using static or dynamic RNN has excellent results. However, few studies have given attention to applying deep learning in the form of dynamic RNN to predictions of process performance indicators. To fill this knowledge gap, the study developed an approach to using process mining and dynamic RNN. By utilizing actual data from a large domestic company, it has applied the suggested approach in estimating timely stocking in purchasing process, which is an important indicator of the process. The analytic methods and results of this study were presented and some implications and limitations are also discussed.

Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction (팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링)

  • Sungho Bae;Myungsun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2024
  • This study develops a deep learning-based methodology for predicting Crude Palm Oil (CPO) prices. Palm oil is an essential resource across various industries due to its yield and economic efficiency, leading to increased industrial interest in its price volatility. While numerous studies have been conducted on palm oil price prediction, most rely on time series forecasting, which has inherent accuracy limitations. To address the main limitation of traditional methods-the absence of stationarity-this research introduces a novel model that uses the ratio of future prices to current prices as the dependent variable. This approach, inspired by return modeling in stock price predictions, demonstrates superior performance over simple price prediction. Additionally, the methodology incorporates the consideration of lag values of independent variables, a critical factor in multivariate time series forecasting, to eliminate unnecessary noise and enhance the stability of the prediction model. This research not only significantly improves the accuracy of palm oil price prediction but also offers an applicable approach for other economic forecasting issues where time series data is crucial, providing substantial value to the industry.

The Impact of Initial eWOM Growth on the Sales in Movie Distribution

  • Oh, Yun-Kyung
    • Journal of Distribution Science
    • /
    • v.15 no.9
    • /
    • pp.85-93
    • /
    • 2017
  • Purpose - The volume and valence of online word-of-mouth(eWOM) have become an important part of the retailer's market success for a wide range of products. This study aims to investigate how the growth of eWOM has generated the product's final financial outcomes in the introductory period influences. Research design, data, and methodology - This study uses weekly box office performance for 117 movies released in the South Korea from July 2015 to June 2016 using Korean Film Council(KOFIC) database. 292,371 posted online review messages were collected from NAVER movie review bulletin board. Using regression analysis, we test whether eWOM incurred during the opening week is valuable to explain the last of box office performance. Three major eWOM metrics were considered after controlling for the major distributional factors. Results - Results support that major eWOM variables play a significant role in box-office outcome prediction. Especially, the growth rate of the positive eWOM volume has a significant effect on the growth potential in sales. Conclusions - The findings highlight that the speed of eWOM growth has an informational value to understand the market reaction to a new product beyond valence and volume. Movie distributors need to take positive online eWOM growth into account to make optimal screen allocation decisions after release.

Mean fragmentation size prediction in an open-pit mine using machine learning techniques and the Kuz-Ram model

  • Seung-Joong Lee;Sung-Oong Choi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.547-559
    • /
    • 2023
  • We evaluated the applicability of machine learning techniques and the Kuz-Ram model for predicting the mean fragmentation size in open-pit mines. The characteristics of the in-situ rock considered here were uniaxial compressive strength, tensile strength, rock factor, and mean in-situ block size. Seventy field datasets that included these characteristics were collected to predict the mean fragmentation size. Deep neural network, support vector machine, and extreme gradient boosting (XGBoost) models were trained using the data. The performance was evaluated using the root mean squared error (RMSE) and the coefficient of determination (r2). The XGBoost model had the smallest RMSE and the highest r2 value compared with the other models. Additionally, when analyzing the error rate between the measured and predicted values, XGBoost had the lowest error rate. When the Kuz-Ram model was applied, low accuracy was observed owing to the differences in the characteristics of data used for model development. Consequently, the proposed XGBoost model predicted the mean fragmentation size more accurately than other models. If its performance is improved by securing sufficient data in the future, it will be useful for improving the blasting efficiency at the target site.

The Relationship between Corporate Social Responsibilities and Financial Reporting Quality: Focusing on Distribution & Service Companies (사회적 공헌활동과 재무보고품질: 유통, 서비스 기업을 중심으로)

  • Chae, Soo-Joon;Ryu, Hae-Young
    • Journal of Distribution Science
    • /
    • v.16 no.10
    • /
    • pp.77-82
    • /
    • 2018
  • Purpose - This paper examines the relationship between corporate social responsibility and financial reporting quality. Corporate social responsibility is a way for firms to take responsibility for the social and environmental impacts of their business operations. Corporate social responsibility is a broad concept that can take various forms depending on the firm and industry. Through corporate social responsibility programs, firms can benefit society. At the same time, firms improve their reputations by increasing engagement in corporate social responsibility activities. However, corporate social responsibility activities are not directly related to profitability, especially for distribution firms. Research design, data, and methodology - 229 distribution & service firm-years between 2011 and 2016 are used for the main analysis. In Korea, Korean Economic Justice Institute evaluates the ethical performance of Korean firms, and the institute annually discloses the scores of top firms. This study uses the KEJI Index scores to measure firm-level corporate social responsibility activities. Discretionary accruals are used as a proxy for financial reporting quality. Discretionary accruals can be used opportunistically, and thus distort the information in earnings. We extract financial data from the KIS Value database. Results - We find that distribution & service firms' engagement in corporate social responsibilities is positively related to their financial reporting quality. First, there is a negative correlation between implementation of corporate social responsibility activities and discretionary accruals. In addition, we find that the coefficient of CSR is significantly negative, supporting our prediction. The result is significant at the 1% level. Conclusions - We examine the relationship between corporate social responsibility activities of distribution firms and their financial reporting quality while most prior studies examine the engagement in corporate social responsibility activities of manufacturing firms. The results of this study show that distribution & service firms engaging in corporate social responsibility activities are likely to maintain high-quality financial reporting.

Development of Demand Forecasting Model for Public Bicycles in Seoul Using GRU (GRU 기법을 활용한 서울시 공공자전거 수요예측 모델 개발)

  • Lee, Seung-Woon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.1-25
    • /
    • 2022
  • After the first Covid-19 confirmed case occurred in Korea in January 2020, interest in personal transportation such as public bicycles not public transportation such as buses and subways, increased. The demand for 'Ddareungi', a public bicycle operated by the Seoul Metropolitan Government, has also increased. In this study, a demand prediction model of a GRU(Gated Recurrent Unit) was presented based on the rental history of public bicycles by time zone(2019~2021) in Seoul. The usefulness of the GRU method presented in this study was verified based on the rental history of Around Exit 1 of Yeouido, Yeongdengpo-gu, Seoul. In particular, it was compared and analyzed with multiple linear regression models and recurrent neural network models under the same conditions. In addition, when developing the model, in addition to weather factors, the Seoul living population was used as a variable and verified. MAE and RMSE were used as performance indicators for the model, and through this, the usefulness of the GRU model proposed in this study was presented. As a result of this study, the proposed GRU model showed higher prediction accuracy than the traditional multi-linear regression model and the LSTM model and Conv-LSTM model, which have recently been in the spotlight. Also the GRU model was faster than the LSTM model and the Conv-LSTM model. Through this study, it will be possible to help solve the problem of relocation in the future by predicting the demand for public bicycles in Seoul more quickly and accurately.

Bankruptcy prediction using an improved bagging ensemble (개선된 배깅 앙상블을 활용한 기업부도예측)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.121-139
    • /
    • 2014
  • Predicting corporate failure has been an important topic in accounting and finance. The costs associated with bankruptcy are high, so the accuracy of bankruptcy prediction is greatly important for financial institutions. Lots of researchers have dealt with the topic associated with bankruptcy prediction in the past three decades. The current research attempts to use ensemble models for improving the performance of bankruptcy prediction. Ensemble classification is to combine individually trained classifiers in order to gain more accurate prediction than individual models. Ensemble techniques are shown to be very useful for improving the generalization ability of the classifier. Bagging is the most commonly used methods for constructing ensemble classifiers. In bagging, the different training data subsets are randomly drawn with replacement from the original training dataset. Base classifiers are trained on the different bootstrap samples. Instance selection is to select critical instances while deleting and removing irrelevant and harmful instances from the original set. Instance selection and bagging are quite well known in data mining. However, few studies have dealt with the integration of instance selection and bagging. This study proposes an improved bagging ensemble based on instance selection using genetic algorithms (GA) for improving the performance of SVM. GA is an efficient optimization procedure based on the theory of natural selection and evolution. GA uses the idea of survival of the fittest by progressively accepting better solutions to the problems. GA searches by maintaining a population of solutions from which better solutions are created rather than making incremental changes to a single solution to the problem. The initial solution population is generated randomly and evolves into the next generation by genetic operators such as selection, crossover and mutation. The solutions coded by strings are evaluated by the fitness function. The proposed model consists of two phases: GA based Instance Selection and Instance based Bagging. In the first phase, GA is used to select optimal instance subset that is used as input data of bagging model. In this study, the chromosome is encoded as a form of binary string for the instance subset. In this phase, the population size was set to 100 while maximum number of generations was set to 150. We set the crossover rate and mutation rate to 0.7 and 0.1 respectively. We used the prediction accuracy of model as the fitness function of GA. SVM model is trained on training data set using the selected instance subset. The prediction accuracy of SVM model over test data set is used as fitness value in order to avoid overfitting. In the second phase, we used the optimal instance subset selected in the first phase as input data of bagging model. We used SVM model as base classifier for bagging ensemble. The majority voting scheme was used as a combining method in this study. This study applies the proposed model to the bankruptcy prediction problem using a real data set from Korean companies. The research data used in this study contains 1832 externally non-audited firms which filed for bankruptcy (916 cases) and non-bankruptcy (916 cases). Financial ratios categorized as stability, profitability, growth, activity and cash flow were investigated through literature review and basic statistical methods and we selected 8 financial ratios as the final input variables. We separated the whole data into three subsets as training, test and validation data set. In this study, we compared the proposed model with several comparative models including the simple individual SVM model, the simple bagging model and the instance selection based SVM model. The McNemar tests were used to examine whether the proposed model significantly outperforms the other models. The experimental results show that the proposed model outperforms the other models.

The Mechanism of the Influence of Advanced Selling on Consumer Choice (사전예약을 통한 구매결정이 소비자의 선택에 미치는 영향력의 작동원리에 관한 실증연구)

  • Kim, Kyung-Ho;Lee, Hyoung-Tark;Seo, Heon-Joo
    • Journal of Distribution Science
    • /
    • v.14 no.6
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose - In recent, a research finds that advanced selling can influence a consumer's choice(Kim et al., 2013). Advanced selling is defined as the new product launching strategy which company allows consumers to preorder new product before its release(Chu & Zhang, 2011). Prior researches have focused on the benefits of advanced selling(e.g., information gathering for demand prediction, an advantage for pricing strategy, and so on) for companies using this strategy(Chen, 2001; Chu & Zhang, 2011; Li & Zhang, 2013; Tang et al., 2004; Xie & Shugan, 2009). However, Kim et al.(2013) find it can also influence a consumer's choice. In detail, they suggest that when consumers use advanced selling, they are likely to prefer high-performance options rather than low-price options based on construal level theory(Trope & Liberman, 2003). In this paper, we tried to expand the prior researches for finding the mechanism of the influence of advanced selling on a consumer's choice. The purpose of this research is to test the mediating effect on the influence of advanced selling. Research design, data, and methodology - To find the mechanism of the influence of advanced selling, we designed an experiment for testing mediation effect. we recruited 93 students from a university. We assigned participants into one of two groups using randomization method. The participants with each group were given a scenario describing the sales strategy. Finally, they made a choice between high-performance option and low-price option. Sequentially, they also responded some questions for testing mediation effect. Results - First, we replicated prior research to test the influence of advanced selling. As a result, we could find that consumers prefer the high-performance option when they preorder it to purchase at the time of consumption. Thus, the replication result is the same as prior research. Second, we tested that advanced selling can influence the perception of temporal distance. The results confirmed that consumers perceived longer temporal distance in advanced selling condition(β = 1.575, SE = 0.272, p < 0.001). Third, we predicted that temporal distance can increase the importance of desirable attributes and decrease the importance of feasible attributes. The results suggested that temporal distance decreased significantly the importance of attributes related to feasibility(β = -0.19, SE = 0.07, p < 0.01), however, it had non-significant effect on increasing the importance of desirable attributes. Finally, we used Sobel-test for testing mediation effect, and it confirmed that the importance of feasible attributes had mediating role of the influence of advanced selling(Sobel test statistic = -2.110, SE = 0.111, p < 0.05). Conclusions - In this paper, we tried to find the mechanism of the influence on advanced selling from a consumer's choice. With an experiment, we confirmed that the importance of feasible attributes could mediate the effect on advanced selling. Therefore, we suggested some theoretical and practical contributions from this research. Finally, we discussed research limitations and suggested future research topics.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Application of Machine Learning to Predict Weight Loss in Overweight, and Obese Patients on Korean Medicine Weight Management Program (한의 체중 조절 프로그램에 참여한 과체중, 비만 환자에서의 머신러닝 기법을 적용한 체중 감량 예측 연구)

  • Kim, Eunjoo;Park, Young-Bae;Choi, Kahye;Lim, Young-Woo;Ok, Ji-Myung;Noh, Eun-Young;Song, Tae Min;Kang, Jihoon;Lee, Hyangsook;Kim, Seo-Young
    • The Journal of Korean Medicine
    • /
    • v.41 no.2
    • /
    • pp.58-79
    • /
    • 2020
  • Objectives: The purpose of this study is to predict the weight loss by applying machine learning using real-world clinical data from overweight and obese adults on weight loss program in 4 Korean Medicine obesity clinics. Methods: From January, 2017 to May, 2019, we collected data from overweight and obese adults (BMI≥23 kg/m2) who registered for a 3-month Gamitaeeumjowi-tang prescription program. Predictive analysis was conducted at the time of three prescriptions, and the expected reduced rate and reduced weight at the next order of prescription were predicted as binary classification (classification benchmark: highest quartile, median, lowest quartile). For the median, further analysis was conducted after using the variable selection method. The data set for each analysis was 25,988 in the first, 6,304 in the second, and 833 in the third. 5-fold cross validation was used to prevent overfitting. Results: Prediction accuracy was increased from 1st to 2nd and 3rd analysis. After selecting the variables based on the median, artificial neural network showed the highest accuracy in 1st (54.69%), 2nd (73.52%), and 3rd (81.88%) prediction analysis based on reduced rate. The prediction performance was additionally confirmed through AUC, Random Forest showed the highest in 1st (0.640), 2nd (0.816), and 3rd (0.939) prediction analysis based on reduced weight. Conclusions: The prediction of weight loss by applying machine learning showed that the accuracy was improved by using the initial weight loss information. There is a possibility that it can be used to screen patients who need intensive intervention when expected weight loss is low.