• Title/Summary/Keyword: Business Modeling

Search Result 1,898, Processing Time 0.028 seconds

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

An Exploratory Study on the Effects of Relational Benefits and Brand Identity : mediating effect of brand identity (관계혜택과 브랜드 동일시의 역할에 관한 탐색적 연구: 브랜드 동일시의 매개역할을 중심으로)

  • Bang, Jounghae;Jung, Jiyeon;Lee, Eunhyung;Kang, Hyunmo
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.155-175
    • /
    • 2010
  • Most of the service industries including finance and telecommunications have become matured and saturated. The competitions have become severe while the differences among brands become smaller. Therefore maintaining good relationships with customers has been critical for the service providers. In case of credit card and debit card, the similar patterns are shown. It is important for them to maintain good relationships with customers, and therefore, they have used marketing program which provides customized services to customers and utilizes the membership programs. Not only do they build and maintain good relationships, but also highlight their brands from the emotional aspects. For example, KB Card or Hyundai Card uses well-known designers' works for their credit card design. As well, they differentiate the designs of credit cards to stress on their brand personalities. BC Card introduced the credit card with perfume that a customer would like. Even though the credit card is small and not shown to public easily, it becomes more important for those companies to touch the customers' feelings with the brand personalities and their images. This is partly because of changes in consumers' lifestyles. Y-generations becomes highly likely to express themselves in many different ways and more emotional than X-generations. For the Y-generations, therefore, even credit cards in the wallet should be personalized and well-designed. In line with it, credit cards with good design can be seen as an example of brand identity, where different design for each customer can be used to recognize the membership groups that customers want to belong. On the other hand, these credit card companies offer the special treatment benefits for those customers who are heavy users for the cards. For example, those customers who love sports will receive some special discounts when they use their credit cards for sports related products. Therefore this study attempted to explore the relationships between relational benefits, brand identification and loyalty. It has been well known that relational benefits and brand identification lead to loyalty independently from many other studies, but there has been few study to review all the three variables all together in a research model. Furthermore, as reviewed above, in the card industry, many companies attempt to associate the brand image with their products to fit their customers' lifestyles while relational benefits are still playing an important role for their business. Therefore in our research model, relational benefits, brand identification, and loyalty are all included. We focus on the mediating effect of brand identification. From the relational benefits perspective, only special treatment benefit and confidence benefit are included. Social benefit is not applicable for this credit card industry because not many cases of face-to-face interaction can be found. From the brand identification perspective, personal brand identity and social brand identity are reviewed and included in the model. Overall, the research model emphasizes that the relationships between relational benefits and loyalty will be mediated by the effect of brand identification. The effects of relational benefits which are confidence benefit and special treatment benefits on loyalty will be realized when they fit to the personal brand identity and social brand identity. In the research model, therefore, the relationships between confidence benefit and social brand identity, and between confidence benefit and personal identity are hypothesized while the effects of special treatment benefit on social brand identity and personal brand identity are hypothesized. Loyalty, then, is hypothesized to have positive relationships with personal brand identity and social brand identity. In addition, confidence benefit among the relational benefits is expected to have a direct, positive relationship with loyalty because confidence benefit has been recognized as a critical factor for good relationships and satisfaction. Data were collected from college students who have been using either credit cards or debit cards. College students were regarded good subjects because they are in Y-generation cohorts and have tendency to express themselves more. Total sample size was two hundred three at the beginning, but after deleting those data with many missing values, one hundred ninety-seven data points were remained and used for the model testing. Measurement items were brought from the previous literatures and modified for this research. To test the reliability, using SPSS 14, chronbach's α was examined and all the values were from .874 to .928 exceeding over .7. Using AMOS 7.0, confirmatory factor analysis was conducted to investigate the measurement model. The measurement model was found good fit with χ2(67)=188.388 (p= .000), GFI=.886, AGFI=.821, CFI=.941, RMSEA=.096. Using AMOS 7.0, structural equation modeling has been used to analyze the research model. Overall, the research model fit were χ2(68)=188.670 (p= .000), GFI=.886, AGFI=,824 CFI=.942, RMSEA=.095 indicating good fit. In details, all the paths hypothesized in the research model were found significant except for the path from social brand identity to loyalty. Personal brand identity leads to loyalty while both confidence benefit and special treatment benefit have a positive relationships with personal and social identities. As well, confidence benefit has a direct positive effect on loyalty. The results indicates the followings. First, personal brand identity plays an important role for credit/debit card usage. Therefore even for the products which are not shown to public easy, design and emotional aspect can be important to fit the customers' lifestyles. Second, confidence benefit and special treatment benefit have a positive effects on personal brand identity. Therefore it will be needed for marketers to associate the special treatment and trust and confidence benefits with personal image, personality and personal identity. Third, this study found again the importance of confidence and trust. However interestingly enough, social brand identity was not found to be significantly related to loyalty. It can be explained that the main sample of this study consists of college students. Those strategies to facilitate social brand identity are focused on high social status groups while college students have not been established their status yet.

  • PDF

Dynamic Decision Making using Social Context based on Ontology (상황 온톨로지를 이용한 동적 의사결정시스템)

  • Kim, Hyun-Woo;Sohn, M.-Ye;Lee, Hyun-Jung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.43-61
    • /
    • 2011
  • In this research, we propose a dynamic decision making using social context based on ontology. Dynamic adaptation is adopted for the high qualified decision making, which is defined as creation of proper information using contexts depending on decision maker's state of affairs in ubiquitous computing environment. Thereby, the context for the dynamic adaptation is classified as a static, dynamic and social context. Static context contains personal explicit information like demographic data. Dynamic context like weather or traffic information is provided by external information service provider. Finally, social context implies much more implicit knowledge such as social relationship than the other two-type context, but it is not easy to extract any implied tacit knowledge as well as generalized rules from the information. So, it was not easy for the social context to apply into dynamic adaptation. In this light, we tried the social context into the dynamic adaptation to generate context-appropriate personalized information. It is necessary to build modeling methodology to adopt dynamic adaptation using the context. The proposed context modeling used ontology and cases which are best to represent tacit and unstructured knowledge such as social context. Case-based reasoning and constraint satisfaction problem is applied into the dynamic decision making system for the dynamic adaption. Case-based reasoning is used case to represent the context including social, dynamic and static and to extract personalized knowledge from the personalized case-base. Constraint satisfaction problem is used when the selected case through the case-based reasoning needs dynamic adaptation, since it is usual to adapt the selected case because context can be changed timely according to environment status. The case-base reasoning adopts problem context for effective representation of static, dynamic and social context, which use a case structure with index and solution and problem ontology of decision maker. The case is stored in case-base as a repository of a decision maker's personal experience and knowledge. The constraint satisfaction problem use solution ontology which is extracted from collective intelligence which is generalized from solutions of decision makers. The solution ontology is retrieved to find proper solution depending on the decision maker's context when it is necessary. At the same time, dynamic adaptation is applied to adapt the selected case using solution ontology. The decision making process is comprised of following steps. First, whenever the system aware new context, the system converses the context into problem context ontology with case structure. Any context is defined by a case with a formal knowledge representation structure. Thereby, social context as implicit knowledge is also represented a formal form like a case. In addition, for the context modeling, ontology is also adopted. Second, we select a proper case as a decision making solution from decision maker's personal case-base. We convince that the selected case should be the best case depending on context related to decision maker's current status as well as decision maker's requirements. However, it is possible to change the environment and context around the decision maker and it is necessary to adapt the selected case. Third, if the selected case is not available or the decision maker doesn't satisfy according to the newly arrived context, then constraint satisfaction problem and solution ontology is applied to derive new solution for the decision maker. The constraint satisfaction problem uses to the previously selected case to adopt and solution ontology. The verification of the proposed methodology is processed by searching a meeting place according to the decision maker's requirements and context, the extracted solution shows the satisfaction depending on meeting purpose.

The Effects of Service Employee's Surface Acting on Counterproductive Work Behavior: The Mediating Roles of Emotional Exhaustion (서비스 종업원의 표면행위가 반생산적 과업행동에 미치는 효과에 관한 연구: 감정소모의 매개효과를 중심으로)

  • Kang, Seong-Ho;Chay, Jong-Hak;Lee, Ji-Ae;Hur, Won-Moo
    • Journal of Distribution Science
    • /
    • v.14 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • Purpose - Counterproductive work behavior(CWB) was typically categorized according to the behavior whether it targets other people(i.e., interpersonal CWB: I-CWB). Employing organizations(i.e., organizational CWB: O-CWB) has emerged as major concerns among researchers, managers, and the general public. An abundance of researches has informed us about the understanding for the antecedents of CWB, whereas little is known about the antecedents of CWB directed distribution service in employee's emotional labor. Therefore, the purpose of this research is to propose a research model in which surface acting enhances emotional exhaustion as an emotional labor strategy, which eventually increases counterproductive work behavior(including I-CWM and O-CWB). Research design, data, and methodology - This empirical research data were gathered from the samples of full time frontline hotel employees(including front office, call center, food/beverage, concierge, and room service) in South Korea. Six hotels were selected ranged from four to five stars, including privately owned and joint-venture properties. A convenience sampling method was used to select hotels. Full time frontline hotel employees from the six hotels were surveyed using a self-administered instrument for data collection. With the strong support of hotel managers, a total of 300 questionnaires were distributed, and 252 responses were collected indicating a response rate of 84.0%. In the process of working with the 252 samples, structural equation modeling is employed to test research hypotheses(H1: The relationship between surface acting and Interpersonal counterproductive work behavior(I-CWB) is mediated by emotional exhaustion, H2: The relationship between surface acting and organizational counterproductive work behavior(O-CWB) is mediated by emotional exhaustion). SPSS 18.0 and M-Plus 7.31 software were used for the data analysis. Descriptive statistics were used to assess the distribution of the employee profiles and correlations between factors. M-Plus 7.31 software was used to test the model fit, validity, and reliability of the factors, significance of the relationship between factors, and the effects of factors in the model. Results - To test our mediation hypotheses, we used an analytical strategy suggested by Preacher & Hayes (2008) and Shrout & Bolger (2002). This mediation approach directly tests the indirect effect between the predictor and the criterion variables through the mediator via a bootstrapping procedure. Thus, it addresses some weaknesses associated with the Sobel test. We found that surface acting was positively related to emotional exhaustion. Furthermore, emotional exhaustion was a significant predictor from the two kinds of counterproductive work behavior. In addition, surface acting was not significantly associated with the two kinds of counterproductive work behavior. These results indicated that the surface acting by frontline hotel employees was associated with higher emotional exhaustion, which is related with higher interpersonal counterproductive work behavior(I-CWB) and organizational counterproductive work behavior(O-CWB). In sum, we confirmed that the positive relationship between surface acting and the two kinds of counterproductive work behavior was fully mediated by emotional exhaustion. Conclusions - The current research broadens the conceptual work and empirical studies in counterproductive work behavior literature by representing a fundamental mechanism that how surface acting affects counterproductive work behavior.

A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case (멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례)

  • Seo, Won-Jun;Lee, Dae-Cheor;Lim, Gyoo-Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.157-175
    • /
    • 2012
  • It is difficult to evaluate the performance of process innovation of e-procurement which has large scale and complex processes. The existing evaluation methods for measuring the effects of process innovation have been mainly done with statistically quantitative methods by analyzing operational data or with qualitative methods by conducting surveys and interviews. However, these methods have some limitations to evaluate the effects because the performance evaluation of e-procurement process innovation should consider the interactions among participants who are active either directly or indirectly through the processes. This study considers the e-procurement process as a complex system and develops a simulation model based on MAS(Multi-Agent System) to evaluate the effects of e-procurement process innovation. Multi-agent based simulation allows observing interaction patterns of objects in virtual world through relationship among objects and their behavioral mechanism. Agent-based simulation is suitable especially for complex business problems. In this study, we used Netlogo Version 4.1.3 as a MAS simulation tool which was developed in Northwestern University. To do this, we developed a interaction model of agents in MAS environment. We defined process agents and task agents, and assigned their behavioral characteristics. The developed simulation model was applied to G2B system (KONEPS: Korea ON-line E-Procurement System) of Public Procurement Service (PPS) in Korea and used to evaluate the innovation effects of the G2B system. KONEPS is a successfully established e-procurement system started in the year 2002. KONEPS is a representative e-Procurement system which integrates characteristics of e-commerce into government for business procurement activities. KONEPS deserves the international recognition considering the annual transaction volume of 56 billion dollars, daily exchanges of electronic documents, users consisted of 121,000 suppliers and 37,000 public organizations, and the 4.5 billion dollars of cost saving. For the simulation, we analyzed the e-procurement of process of KONEPS into eight sub processes such as 'process 1: search products and acquisition of proposal', 'process 2 : review the methods of contracts and item features', 'process 3 : a notice of bid', 'process 4 : registration and confirmation of qualification', 'process 5 : bidding', 'process 6 : a screening test', 'process 7 : contracts', and 'process 8 : invoice and payment'. For the parameter settings of the agents behavior, we collected some data from the transactional database of PPS and some information by conducting a survey. The used data for the simulation are 'participants (government organizations, local government organizations and public institutions)', 'the number of bidding per year', 'the number of total contracts', 'the number of shopping mall transactions', 'the rate of contracts between bidding and shopping mall', 'the successful bidding ratio', and the estimated time for each process. The comparison was done for the difference of time consumption between 'before the innovation (As-was)' and 'after the innovation (As-is).' The results showed that there were productivity improvements in every eight sub processes. The decrease ratio of 'average number of task processing' was 92.7% and the decrease ratio of 'average time of task processing' was 95.4% in entire processes when we use G2B system comparing to the conventional method. Also, this study found that the process innovation effect will be enhanced if the task process related to the 'contract' can be improved. This study shows the usability and possibility of using MAS in process innovation evaluation and its modeling.

The Mediating Role of Perceived Risk in the Relationships Between Enduring Product Involvement and Trust Expectation (지속적 제품관여도와 소비자 요구신뢰수준 간의 영향관계: 인지된 위험의 매개 역할에 대한 실증분석을 중심으로)

  • Hong, Ilyoo B.;Kim, Taeha;Cha, Hoon S.
    • Asia pacific journal of information systems
    • /
    • v.23 no.4
    • /
    • pp.103-128
    • /
    • 2013
  • When a consumer needs a product or service and multiple sellers are available online, the process of selecting a seller to buy online from is complex since the process involves many behavioral dimensions that have to be taken into account. As a part of this selection process, consumers may set minimum trust expectation that can be used to screen out less trustworthy sellers. In the previous research, the level of consumers' trust expectation has been anchored on two important factors: product involvement and perceived risk. Product involvement refers to the extent to which a consumer perceives a specific product important. Thus, the higher product involvement may result in the higher trust expectation in sellers. On the other hand, other related studies found that when consumers perceived a higher level of risk (e.g., credit card fraud risk), they set higher trust expectation as well. While abundant research exists addressing the relationship between product involvement and perceived risk, little attention has been paid to the integrative view of the link between the two constructs and their impacts on the trust expectation. The present paper is a step toward filling this research gap. The purpose of this paper is to understand the process by which a consumer chooses an online merchant by examining the relationships among product involvement, perceived risk, trust expectation, and intention to buy from an e-tailer. We specifically focus on the mediating role of perceived risk in the relationships between enduring product involvement and the trust expectation. That is, we question whether product involvement affects the trust expectation directly without mediation or indirectly mediated by perceived risk. The research model with four hypotheses was initially tested using data gathered from 635 respondents through an online survey method. The structural equation modeling technique with partial least square was used to validate the instrument and the proposed model. The results showed that three out of the four hypotheses formulated were supported. First, we found that the intention to buy from a digital storefront is positively and significantly influenced by the trust expectation, providing support for H4 (trust expectation ${\rightarrow}$ purchase intention). Second, perceived risk was found to be a strong predictor of trust expectation, supporting H2 as well (perceived risk ${\rightarrow}$ trust expectation). Third, we did not find any evidence of direct influence of product involvement, which caused H3 to be rejected (product involvement ${\rightarrow}$ trust expectation). Finally, we found significant positive relationship between product involvement and perceived risk (H1: product involvement ${\rightarrow}$ perceived risk), which suggests that the possibility of complete mediation of perceived risk in the relationship between enduring product involvement and the trust expectation. As a result, we conducted an additional test for the mediation effect by comparing the original model with the revised model without the mediator variable of perceived risk. Indeed, we found that there exists a strong influence of product involvement on the trust expectation (by intentionally eliminating the variable of perceived risk) that was suppressed (i.e., mediated) by the perceived risk in the original model. The Sobel test statistically confirmed the complete mediation effect. Results of this study offer the following key findings. First, enduring product involvement is positively related to perceived risk, implying that the higher a consumer is enduringly involved with a given product, the greater risk he or she is likely to perceive with regards to the online purchase of the product. Second, perceived risk is positively related to trust expectation. A consumer with great risk perceptions concerning the online purchase is likely to buy from a highly trustworthy online merchant, thereby mitigating potential risks. Finally, product involvement was found to have no direct influence on trust expectation, but the relationship between the two constructs was indirect and mediated by the perceived risk. This is perhaps an important theoretical integration of two separate streams of literature on product involvement and perceived risk. The present research also provides useful implications for practitioners as well as academicians. First, one implication for practicing managers in online retail stores is that they should invest in reducing the perceived risk of consumers in order to lower down the trust expectation and thus increasing the consumer's intention to purchase products or services. Second, an academic implication is that perceived risk mediates the relationship between enduring product involvement and trust expectation. Further research is needed to elaborate the theoretical relationships among the constructs under consideration.

Prediction of a hit drama with a pattern analysis on early viewing ratings (초기 시청시간 패턴 분석을 통한 대흥행 드라마 예측)

  • Nam, Kihwan;Seong, Nohyoon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.33-49
    • /
    • 2018
  • The impact of TV Drama success on TV Rating and the channel promotion effectiveness is very high. The cultural and business impact has been also demonstrated through the Korean Wave. Therefore, the early prediction of the blockbuster success of TV Drama is very important from the strategic perspective of the media industry. Previous studies have tried to predict the audience ratings and success of drama based on various methods. However, most of the studies have made simple predictions using intuitive methods such as the main actor and time zone. These studies have limitations in predicting. In this study, we propose a model for predicting the popularity of drama by analyzing the customer's viewing pattern based on various theories. This is not only a theoretical contribution but also has a contribution from the practical point of view that can be used in actual broadcasting companies. In this study, we collected data of 280 TV mini-series dramas, broadcasted over the terrestrial channels for 10 years from 2003 to 2012. From the data, we selected the most highly ranked and the least highly ranked 45 TV drama and analyzed the viewing patterns of them by 11-step. The various assumptions and conditions for modeling are based on existing studies, or by the opinions of actual broadcasters and by data mining techniques. Then, we developed a prediction model by measuring the viewing-time distance (difference) using Euclidean and Correlation method, which is termed in our study similarity (the sum of distance). Through the similarity measure, we predicted the success of dramas from the viewer's initial viewing-time pattern distribution using 1~5 episodes. In order to confirm that the model is shaken according to the measurement method, various distance measurement methods were applied and the model was checked for its dryness. And when the model was established, we could make a more predictive model using a grid search. Furthermore, we classified the viewers who had watched TV drama more than 70% of the total airtime as the "passionate viewer" when a new drama is broadcasted. Then we compared the drama's passionate viewer percentage the most highly ranked and the least highly ranked dramas. So that we can determine the possibility of blockbuster TV mini-series. We find that the initial viewing-time pattern is the key factor for the prediction of blockbuster dramas. From our model, block-buster dramas were correctly classified with the 75.47% accuracy with the initial viewing-time pattern analysis. This paper shows high prediction rate while suggesting audience rating method different from existing ones. Currently, broadcasters rely heavily on some famous actors called so-called star systems, so they are in more severe competition than ever due to rising production costs of broadcasting programs, long-term recession, aggressive investment in comprehensive programming channels and large corporations. Everyone is in a financially difficult situation. The basic revenue model of these broadcasters is advertising, and the execution of advertising is based on audience rating as a basic index. In the drama, there is uncertainty in the drama market that it is difficult to forecast the demand due to the nature of the commodity, while the drama market has a high financial contribution in the success of various contents of the broadcasting company. Therefore, to minimize the risk of failure. Thus, by analyzing the distribution of the first-time viewing time, it can be a practical help to establish a response strategy (organization/ marketing/story change, etc.) of the related company. Also, in this paper, we found that the behavior of the audience is crucial to the success of the program. In this paper, we define TV viewing as a measure of how enthusiastically watching TV is watched. We can predict the success of the program successfully by calculating the loyalty of the customer with the hot blood. This way of calculating loyalty can also be used to calculate loyalty to various platforms. It can also be used for marketing programs such as highlights, script previews, making movies, characters, games, and other marketing projects.

Development of Topic Trend Analysis Model for Industrial Intelligence using Public Data (텍스트마이닝을 활용한 공개데이터 기반 기업 및 산업 토픽추이분석 모델 제안)

  • Park, Sunyoung;Lee, Gene Moo;Kim, You-Eil;Seo, Jinny
    • Journal of Technology Innovation
    • /
    • v.26 no.4
    • /
    • pp.199-232
    • /
    • 2018
  • There are increasing needs for understanding and fathoming of business management environment through big data analysis at industrial and corporative level. The research using the company disclosure information, which is comprehensively covering the business performance and the future plan of the company, is getting attention. However, there is limited research on developing applicable analytical models leveraging such corporate disclosure data due to its unstructured nature. This study proposes a text-mining-based analytical model for industrial and firm level analyses using publicly available company disclousre data. Specifically, we apply LDA topic model and word2vec word embedding model on the U.S. SEC data from the publicly listed firms and analyze the trends of business topics at the industrial and corporate levels. Using LDA topic modeling based on SEC EDGAR 10-K document, whole industrial management topics are figured out. For comparison of different pattern of industries' topic trend, software and hardware industries are compared in recent 20 years. Also, the changes of management subject at firm level are observed with comparison of two companies in software industry. The changes of topic trends provides lens for identifying decreasing and growing management subjects at industrial and firm level. Mapping companies and products(or services) based on dimension reduction after using word2vec word embedding model and principal component analysis of 10-K document at firm level in software industry, companies and products(services) that have similar management subjects are identified and also their changes in decades. For suggesting methodology to develop analysis model based on public management data at industrial and corporate level, there may be contributions in terms of making ground of practical methodology to identifying changes of managements subjects. However, there are required further researches to provide microscopic analytical model with regard to relation of technology management strategy between management performance in case of related to various pattern of management topics as of frequent changes of management subject or their momentum. Also more studies are needed for developing competitive context analysis model with product(service)-portfolios between firms.

A Study on the Determinants of Blockchain-oriented Supply Chain Management (SCM) Services (블록체인 기반 공급사슬관리 서비스 활용의 결정요인 연구)

  • Kwon, Youngsig;Ahn, Hyunchul
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.119-144
    • /
    • 2021
  • Recently, as competition in the market evolves from the competition among companies to the competition among their supply chains, companies are struggling to enhance their supply chain management (hereinafter SCM). In particular, as blockchain technology with various technical advantages is combined with SCM, a lot of domestic manufacturing and distribution companies are considering the adoption of blockchain-oriented SCM (BOSCM) services today. Thus, it is an important academic topic to examine the factors affecting the use of blockchain-oriented SCM. However, most prior studies on blockchain and SCMs have designed their research models based on Technology Acceptance Model (TAM) or the Unified Theory of Acceptance and Use of Technology (UTAUT), which are suitable for explaining individual's acceptance of information technology rather than companies'. Under this background, this study presents a novel model of blockchain-oriented SCM acceptance model based on the Technology-Organization-Environment (TOE) framework to consider companies as the unit of analysis. In addition, Value-based Adoption Model (VAM) is applied to the research model in order to consider the benefits and the sacrifices caused by a new information system comprehensively. To validate the proposed research model, a survey of 126 companies were collected. Among them, by applying PLS-SEM (Partial Least Squares Structural Equation Modeling) with data of 122 companies, the research model was verified. As a result, 'business innovation', 'tracking and tracing', 'security enhancement' and 'cost' from technology viewpoint are found to significantly affect 'perceived value', which in turn affects 'intention to use blockchain-oriented SCM'. Also, 'organization readiness' is found to affect 'intention to use' with statistical significance. However, it is found that 'complexity' and 'regulation environment' have little impact on 'perceived value' and 'intention to use', respectively. It is expected that the findings of this study contribute to preparing practical and policy alternatives for facilitating blockchain-oriented SCM adoption in Korean firms.

Knowledge graph-based knowledge map for efficient expression and inference of associated knowledge (연관지식의 효율적인 표현 및 추론이 가능한 지식그래프 기반 지식지도)

  • Yoo, Keedong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.49-71
    • /
    • 2021
  • Users who intend to utilize knowledge to actively solve given problems proceed their jobs with cross- and sequential exploration of associated knowledge related each other in terms of certain criteria, such as content relevance. A knowledge map is the diagram or taxonomy overviewing status of currently managed knowledge in a knowledge-base, and supports users' knowledge exploration based on certain relationships between knowledge. A knowledge map, therefore, must be expressed in a networked form by linking related knowledge based on certain types of relationships, and should be implemented by deploying proper technologies or tools specialized in defining and inferring them. To meet this end, this study suggests a methodology for developing the knowledge graph-based knowledge map using the Graph DB known to exhibit proper functionality in expressing and inferring relationships between entities and their relationships stored in a knowledge-base. Procedures of the proposed methodology are modeling graph data, creating nodes, properties, relationships, and composing knowledge networks by combining identified links between knowledge. Among various Graph DBs, the Neo4j is used in this study for its high credibility and applicability through wide and various application cases. To examine the validity of the proposed methodology, a knowledge graph-based knowledge map is implemented deploying the Graph DB, and a performance comparison test is performed, by applying previous research's data to check whether this study's knowledge map can yield the same level of performance as the previous one did. Previous research's case is concerned with building a process-based knowledge map using the ontology technology, which identifies links between related knowledge based on the sequences of tasks producing or being activated by knowledge. In other words, since a task not only is activated by knowledge as an input but also produces knowledge as an output, input and output knowledge are linked as a flow by the task. Also since a business process is composed of affiliated tasks to fulfill the purpose of the process, the knowledge networks within a business process can be concluded by the sequences of the tasks composing the process. Therefore, using the Neo4j, considered process, task, and knowledge as well as the relationships among them are defined as nodes and relationships so that knowledge links can be identified based on the sequences of tasks. The resultant knowledge network by aggregating identified knowledge links is the knowledge map equipping functionality as a knowledge graph, and therefore its performance needs to be tested whether it meets the level of previous research's validation results. The performance test examines two aspects, the correctness of knowledge links and the possibility of inferring new types of knowledge: the former is examined using 7 questions, and the latter is checked by extracting two new-typed knowledge. As a result, the knowledge map constructed through the proposed methodology has showed the same level of performance as the previous one, and processed knowledge definition as well as knowledge relationship inference in a more efficient manner. Furthermore, comparing to the previous research's ontology-based approach, this study's Graph DB-based approach has also showed more beneficial functionality in intensively managing only the knowledge of interest, dynamically defining knowledge and relationships by reflecting various meanings from situations to purposes, agilely inferring knowledge and relationships through Cypher-based query, and easily creating a new relationship by aggregating existing ones, etc. This study's artifacts can be applied to implement the user-friendly function of knowledge exploration reflecting user's cognitive process toward associated knowledge, and can further underpin the development of an intelligent knowledge-base expanding autonomously through the discovery of new knowledge and their relationships by inference. This study, moreover than these, has an instant effect on implementing the networked knowledge map essential to satisfying contemporary users eagerly excavating the way to find proper knowledge to use.