Today, knowledge is considered the most strategically important resource. As research in knowledge management advances, it ought to review and categorize the already published literatures on knowledge management in the area of business strategy, accounting/finance, human resource management and management information technology. To identify the knowledge management research trend, we analyze 168 articles published in prominent academic journal during last two decades. This paper develops three stages model for knowledge management research: observation, initiation and evolution stage. Also, we classify the given researches according to the three criteria of contents, related academic area and applied research method.
Bandwidth Trading(BT) represents a potential market with over 1 trillion USD across the world and high growth potential. BT is also likely to accelerate globalization of the telecommunications industry and massive restructuring driven by unbundling rush. However, systematic researches on BT remain at an infant stage. This study starts with structure analysis of the Internet industry, and discusses significance of Internet interconnection with respect to BT Issues. We also describe the bandwidth commoditization trends and review technical requirements for effective Internet interconnection with BT capability. Taking a step further, this study explores the possibility of improving efficiency of network providers and increasing user convenience by developing an architectural prototype of Hub-&-Spoke interconnection model required to facilitate BT. The BT market provides an Innovative base to ease rigidity of two-party contract and Increase service efficiency. However, as fair, efficient operation by third party is required, this research finally proposes an exchanging hub named NIBX(New Internet Business eXchange).
Hasnain, Muhammad;Pasha, Muhammad Fermi;Ghani, Imran;Jeong, Seung Ryul;Ali, Aitizaz
Journal of Internet Computing and Services
/
v.23
no.2
/
pp.97-105
/
2022
Web services show a rapid evolution and integration to meet the increased users' requirements. Thus, web services undergo updates and may have performance degradation due to undetected faults in the updated versions. Due to these faults, many performances and regression anomalies in web services may occur in real-world scenarios. This paper proposed applying the deep learning model and innovative explainable framework to detect performance and regression anomalies in web services. This study indicated that upper bound and lower bound values in performance metrics provide us with the simple means to detect the performance and regression anomalies in updated versions of web services. The explainable deep learning method enabled us to decide the precise use of deep learning to detect performance and anomalies in web services. The evaluation results of the proposed approach showed us the detection of unusual behavior of web service. The proposed approach is efficient and straightforward in detecting regression anomalies in web services compared with the existing approaches.
Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
Journal of Intelligence and Information Systems
/
v.24
no.4
/
pp.137-154
/
2018
Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.
Since 9/11 attack, internet has become a major space for terrorist activities and also emerged as the most important spot of lone wolf terrorists for acquiring tools and radicalization. The accident of student Kim's defection to IS (Islamic state) in January 2015 told us that Korea is not any more "terrorism clearance area" and leaded us to look closely into the possibility of lone wolf terrorist. In this paper, I developed a "lone wolf cyber evolution model" using various materials collected by preceding papers and interviewing investigators and terrorism experts in Korea. I analyze Kim's radicalization process using this model. And I picked and closely looked over some facilitating factors of lone wolf such as multi-cultural socialization, increase of international migrants, expansion alienation hierarchy and ideological conflicts deepening and predicted the possibility of lone wolf. Finally, this paper presents some effective policy measurements against lone wolf terrorism in Korea.
Industrial clusters are geographical concentrations of interconnected companies, specialised suppliers, service providers, firms in related industries, and associated institutions (for example, universities, standard agencies, and trade associations) that combine to create new products and/or services in specific lines of business. At present, the concept of industrial cluster becomes very popular worldwide, policy makers at national, regional and local levels and business people in both forerunner and latecomer countries are keen to implement the cluster concept as an economic development model. Though understanding of clusters and related promoting policies varies from one place to another, the underlying benefits of clusters from collective learning and knowledge spillovers between participating actors strongly attract the attention of these people. In Thailand, a latecomer country in terms of technological catching up, the cluster concept has been used as a means to rectify weakness and fragmentation of its innovation systems. The present Thai government aspires to apply the concept to promote both high-tech manufacturing clusters, services clusters and community-based clusters at the grass-root level. This paper analyses three very different clusters in terms of technological sophistication and business objectives, i.e., hard disk drive, software and chili paste. It portrays their significant actors, the extent of interaction among them and the evolution of the clusters. Though are very dissimilar, common characteristics attributed to qualified success are found. Main driving forces of the three clusters are cluster intermediaries. Forms of these organizations are different from a government research and technology organization (RTO), an industrial association, to a self-organised community-based organization. However, they perform similar functions of stimulating information and knowledge sharing, and building trust among participating firms/individuals in the clusters. Literature in the cluster studies argues that government policies need to be cluster specific. In this case, the best way to design and implement cluster-specific policies is through working closely with intermediaries and strengthening their institutional especially in linking member firms/individuals to other actors in clusters such as universities, government R&D institutes, and financial institutions.
Chong, Hye Ran;Hong, Sung Hoon;Lee, Min Koo;Kwon, Hyuck Moo
Journal of Korean Society for Quality Management
/
v.45
no.4
/
pp.629-648
/
2017
Purpose: The world faces a great turning point fundamentally rebuilding the future, and human lives, by embracing the 4th industrial revolution era. This paper aims to seek new and various business models in the 4th industrial revolution era, and to examine the evolution of quality management in the changing of the industrial ecosystem. Methods: This paper examines the various strategies of approaching the 4th industrial revolution in Germany, the USA, Japan, China, and Korea. This paper also draws detailed items by classifying the six major items of Malcolm Baldridge into large, medium, and small scale classifications, researches items from the technical perspective by applied fields, and the four major factor perspectives of quality management, as well as analyzes the relevant items in a multidimensional method. After a questionnaire survey targeting 200 quality experts was conducted, the important quality management factors were selected by applying the Analytic Hierarchy Process (AHP) method. Results: The importance of the general criteria was analyzed in the order of customers, MAKM (measurement, analysis, and knowledge management), workforce, strategy, operations, and leadership. As for the importance analysis results of the secondary subcriteria, the following items are highly analyzed: senior leadership, searching business model's innovation opportunity, customer satisfaction improvement, big data utilization, systematic management of workforce, and, planning and design quality. Conclusion: In the era of the Internet of everything, when complexity increases, this study presented a quality management direction suitable for new business methods challenging existing orders by drawing on quality management priorities.
We examine how to model mortality risk using the adaptation of the mean-reverting processes for the two factor model proposed by Cairns et al. (2006b). Mortality improvements have been recently observed in some countries such as United Kingdom; therefore, we assume long-run mortality converges towards a trend at some unknown time and the mean-reverting processes could therefore be an appropriate stochastic model. We estimate the parameters of the two-factor model incorporated with mean-reverting processes by a Metropolis-Hastings algorithm to fit United Kingdom mortality data from 1991 to 2015. We forecast the evolution of the mortality from 2014 to 2040 based on the estimation results in order to evaluate the issue price of a longevity bond of 25 years maturity. As an application, we propose a method to quantify the speed of mortality improvement by the average mean reverting times of the processes.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.12
/
pp.268-277
/
2020
This study emphasizes that the survival strategy of universities should be a co-evolution strategy based on ecological thinking. Therefore, the purpose of the research is to present a theoretical framework for dividing the university innovation ecosystem into four stages and building a co-evolution strategy for each step, as universities play a prominent role in regional innovation ecosystems. Thus, our research method focused on literature research, and the theoretical framework for the university innovation ecosystem used Moore's Enterprise Ecosystem Model (1996). The university's ecological innovation strategy is divided into four stages of development, and a step-by-step co-evolution strategy is presented. Findings are summarized as follows. The pioneering stage involves the creation of values of the university-led innovation ecosystem. The expansion stage focuses on the establishment of critical mass. The authority stage covers maintaining authority and bargaining power. The renewal stage features continuous performance improvement. In particular, this theoretical model of the university-regional innovation ecosystem is meaningful in that it provides a theoretical basis for enhancing the effectiveness of government financial support projects, and for individual universities, it provides a framework for strategies suitable for their ecosystem building process.
The purpose of this study is to introduce the evolution of corporate family-friendly policies and programs, a recent business issue throughout the world. In addition, this study suggests implications for a corporate reference guide to work-family policies and programs by providing a comparative analysis of the typical stages of development of U.S. corporate family-friendly policies and programs, and by presenting model initiatives of Korean and American family-friendly companies. Just as technological changes at the time of the Industrial Revolution altered the relationship between workers and their work, more recent technological advances have again transformed this relationship, offering the promise of a society in which work demands a smaller portion of the worker's time and permitting the worker more freedom and control over work conditions. These new work arrangements have the promise of producing a new paradigm for work and family, based on which many industrialized nations have developed family-friendly policies already. Family-friendly policies and programs can be grouped into four discernable stages in the evolution of a corporate work-family agenda. According to these stages, most companies in Korea are in the predevelopment stage or stage 1. Development of scales to assess company family-friendliness is needed to create a family-friendly workplace environment, policies, and programs. It is critical that companies have champions who have the vision to step out in kent, and the determination to ensure that the family-friendly programs are solidly grounded. Companies should develop their work-family initiatives as an integral part of a program for managing diversity focusing on needs of women and minority employees.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.