• 제목/요약/키워드: Bushing Stiffness

검색결과 18건 처리시간 0.02초

부싱의 대변형거동과 크기를 고려한 등가 강성 해석 (Equivalent Stiffness Analysis of Rubber Bushing Considering Large Deformation and Size Effect)

  • 이현성;승명균;김흥수
    • 대한기계학회논문집A
    • /
    • 제41권4호
    • /
    • pp.271-277
    • /
    • 2017
  • 본 논문에서는 고무 부싱의 등가 강성이 가진 크기와 가진 주파수에 따라 달라지는 동특성에 대해 연구하였다. 새로운 모델은 고부 부싱의 대변형 거동과 크기 효과를 설명하기 위해 제안하였다. 제안된 제안된 모델은 탄성(Elastic) 요소, 점성(Viscous) 요소, 마찰(Friction) 요소로 이루어진 응력항과 등가변형률로 구성되어 있다. 제안된 모델은 실험 결과를 통해 검증하였다. 실험 검증을 통해 제안된 모델은 다양한 가진 크기와 가진 주파수에 따른 고무 부싱의 등가 강성을 정확히 예측함을 확인할 수 있다. 제안된 모델은 자동차 산업에서 고무 부싱의 동적 등가강성을 예측하는데 사용할 수 있을 것으로 예상한다.

유연 지그를 이용한 서스펜션 부싱의 비틀림 및 원추 강성 측정기 개발 (Development of a Measurement System of Torsional and Conical Suspension Bushing Rates with the Flexible Jig)

  • 이재곤;박용국;김기대
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.121-127
    • /
    • 2003
  • The stiffness of a bushing in a suspension is extremely important for the overall performance of the suspension system. A new measurement system including the flexible jig was developed to measure the multi-directional stiffness of bushings. To overcome the disadvantage of building each individual jig for each type and size of a bushing, we designed the flexible jig which can accommodate numerous bushings of similar shapes and sizes. Upon using the novel design of the flexible jig in the industry, we could successfully measure the torsional and conical stiffness of many bushings and apply the data for the prediction and evaluation of the performance of a suspension system, which would assist designing the optimal suspension system.

고무부싱의 강성에 따른 복합소재 대차의 동적거동 평가 (Investigation of Vehicle Dynamic Behavior of Composite Bogie Under Different Rubber Bushing Stiffness Values)

  • 김일겸;김정석;이우근
    • 대한기계학회논문집A
    • /
    • 제39권3호
    • /
    • pp.303-309
    • /
    • 2015
  • 본 연구에서는 무현가 복합소재 대차프레임의 철도차량 적용 가능성을 검토하기 위해 동특성 해석과 시험을 수행하였다. 복합소재 대차에서 윤축의 가이드 역할을 하는 고무부싱의 강성을 10MN/m에서 100MN/m까지 10MN/m 단위로 변화시키면서 차량 동특성을 해석적으로 평가하였다. 평가 결과 고무부싱의 강성이 40MN/m 이상에서는 성능요구조건을 만족하고 있음을 알 수 있었다. 또한, 81MN/m의 강성을 갖는 고무부싱을 제작하여 대차에 설치하고 주행 동특성 시험을 수행하였다. 시험결과 임계속도는 약 363km/h로 나타났으며, 주행 해석에서 얻은 330km/h와 약 10%의 오차를 보였다.

고무 부싱의 주파수 의존 복소 강성을 고려한 차량 현가 장치에서의 전달력 분석 (Consideration of Frequency Dependent Complex Stiffness of Rubber Busings in Transmission Force Analysis of a Vehicle Suspension System)

  • 이준화;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.34-39
    • /
    • 1998
  • In order to compute the forces which are transmitted through rubber bushings with a commercial multibody dynamic analysis (MBDA) program, a rubber bushing model is needed. The rubber bushing model of MBDA programs such as DADS or ADAMS is the Voigt model which is simply a parallel spring-viscous damper system, meaning that the damping force of the Voigt model is proportional to the frequency. However, experiments do not necessarily support this proportionality. Alternatively, the viscoelastic characteristics of rubber bushings can be better represented by the complex stiffness. The purpose of this paper is to develop a viscoelastic rubber bushing model for the MBDA programs. Firstly, a methodology is proposed to calculate the complex stiffness of rubber bushings considering static and dynamic load conditions. Secondly, a viscoelastic rubber bushing model developed which uses standard elements provided by DADS. The proposed methods are applied to the rubber bushings of the lower control arms of a rear suspension of a 1994 Ford Taurus model. Then, the forces computed for the rubber bushing model are analyzed and compared with the Voigt model in time and frequency domains.

  • PDF

차량의 조종안정성 향상을 위한 토 궤적 및 부싱 강성 선정 (Selection of toe geometry and bushing stiffness to improve the Vehicle Handing Characteristics)

  • 손정현;김광석;유완석
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.186-193
    • /
    • 1999
  • In this paper, a full vehicle model is developed to analyze toe and camber changes due to rack height variation and compliance. The AutoDyn7 program developed in G7 project is used for the computer simulation. Steady state cornering test was done to find the understeer gradient. Imposing a pulse steer input, Frequency Response Function(FRF) of yaw rate and lateral accelerations were evaluated. To verify the stability, the rhombus using four parameters is employed. Steer characteristics were evaluated by changing the rack height and the bushing lateral stiffiness. which installed between the low control arm and the chassis.

  • PDF

현가계 컴플라이언스 특성의 최적 설계에 관한 연구 (A Study on the Optimum Design of Compliance Characteristics of Suspension System)

  • 이장무;강주석;탁태오;윤종욱
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.88-97
    • /
    • 1998
  • Compliance elements such as bushings of a suspension system play a crucial role in determining the ride and handling characteristics of the vehicle. In this paper, a general procedure is proposed for the optimum design of compliance elements to meet various design targets. Based on the assumption that the displacements of elastokinematic behavior of a suspension system under external forces are very small, linearized elastokinematic equations in terms of infinitesimal displacements and joint reaction forces are derived. Directly differentiating the linear elastokinematic equations with respect to design variables associated with bushing stiffness, sensitivity equations are obtained. The design process for determining the bushing stiffness using sensitivity analysis and optimization technique is demonstrated.

  • PDF

내연기관용 무연 핀부싱의 마찰특성에 관한 실험적 연구 (Experimental Study on Friction Characteristics of Pb-free Pin Bushing for an Internal Combustion Engine)

  • 김청균;오경석
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.306-311
    • /
    • 2007
  • This paper presents the friction characteristics of pb-fres pin bushing bearings for an automotive gasoline engine. The external load is 100 N to 600 N and the speed of the pin bushing bearing is 1000 rpm to 3000 rpm against the rubbing surfaces. And the contact modes of rubbing surfaces between a piston pin and a pb-free pin bushing specimen are a dry friction, an oil lubricated friction and a mixed friction that is starved by a lack of engine oil. Two influential factors of a contact rubbing modes and a material property are very important parameters on the tribological performance of a friction characteristic between a piston pin and a pb-free pin bushing. The experimental result shows that the pin bushing speed of 2000 rpm shows a typical oil film lubricated sliding contact mode in which means that as the applied load is increased, the friction loss is increasing. But other contact mode depending on the speed and the load may affect to the fiction coefficient without a regular and uniform trend. In summary, the oil lubricated rubbing surface definitely decreases a running-in period in short and increase oil film stiffness, and this may leads the reduction of a friction loss.

A new method to calculate the equivalent stiffness of the suspension system of a vehicle

  • Zhao, Pinbin;Yao, Guo-Feng;Wang, Min;Wang, Xumin;Li, Jianhui
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.363-378
    • /
    • 2012
  • The stiffness of a suspension system is provided by the bushings and the stiffness of the wheel center controls the suspension's elasto-kinematic (e-k) specification. So the stiffness of the wheel center is very important, but the stiffness of the wheel center is very hard to measure. The paper give a new method that we can use the stiffness of the bushings to calculate the equivalent stiffness of the wheel center, which can quickly and widely be used in all kinds of suspension structure. This method can also be used to optimize and design the suspension system. In the example we use the method to calculate the equivalent stiffness of the wheel center which meets the symmetric and positive conditions of the stiffness matrix.

서스펜션 성능 확보를 위한 고강성 차페 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.799-805
    • /
    • 2005
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of Passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band. we can suggest the design guideline about lg cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle Is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between handling and road noise. It makes possible to design the good handling performance vehicle and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

서스펜션 성능 확보를 위한 고강성 차체 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.358-361
    • /
    • 2004
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy. This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band, we can suggest the design guideline about Is cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between Handling and road noise. It makes it possible to design the good handling performance vehicle at initial design stage and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF