Browse > Article
http://dx.doi.org/10.12989/sem.2012.44.3.363

A new method to calculate the equivalent stiffness of the suspension system of a vehicle  

Zhao, Pinbin (Mechanical Department, Nanling Campus, Jilin University)
Yao, Guo-Feng (Mechanical Department, Nanling Campus, Jilin University)
Wang, Min (Mechanical Department, Nanling Campus, Jilin University)
Wang, Xumin (Mechanical Department, Nanling Campus, Jilin University)
Li, Jianhui (Mechanical Department, Nanling Campus, Jilin University)
Publication Information
Structural Engineering and Mechanics / v.44, no.3, 2012 , pp. 363-378 More about this Journal
Abstract
The stiffness of a suspension system is provided by the bushings and the stiffness of the wheel center controls the suspension's elasto-kinematic (e-k) specification. So the stiffness of the wheel center is very important, but the stiffness of the wheel center is very hard to measure. The paper give a new method that we can use the stiffness of the bushings to calculate the equivalent stiffness of the wheel center, which can quickly and widely be used in all kinds of suspension structure. This method can also be used to optimize and design the suspension system. In the example we use the method to calculate the equivalent stiffness of the wheel center which meets the symmetric and positive conditions of the stiffness matrix.
Keywords
stiffness of the wheel center; stiffness of bushing; suspension structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, P.C. and Huang, A.C. (2005), "Adaptive multi-surface sliding control of hydraulic active suspension systems", J. Vib. Control, 11(5), 685-7060.   DOI   ScienceOn
2 Crews John, H., Mattson Michael, G. and Buckner Gregory, D. (2011), "Multi-objective control optimization for semi-active vehicle suspensions", J. Sound Vib., 330(23), 5502-5516.   DOI   ScienceOn
3 Fialho, I. and Balas, G.J. (2002), "Road adaptive active suspension design using linear parameter-varying gainscheduling", IEEE Tran. Control Syst. Tech., 10(1), 43-54.   DOI   ScienceOn
4 Georgiou, G., Verros, G. and Natsiavas, S. (2007), "Multi-objective optimization of quarter-car models with a passive or semi-active suspension system", Veh. Syst. Dyn., 45(1), 77-92.   DOI   ScienceOn
5 Gerrard, M.B. (2005), "The equivalent elastic mechanism: a tool for the analysis and the design of compliant suspension linkages", SAE Technical Paper, 2005-10-1719.
6 Huang, S.G. and Schimmels, J.M. (2000), "The eigenscrew decomposition of spatial stiffness matrices", IEEE J. Robot. Autom., 16(2), 146-156.   DOI   ScienceOn
7 John, J.H. Mattson, M.G. and Buckner, G.D. (2011), "Multi-objective control optimization for semi-active vehicle suspensions", J. Sound Vib., 330(23), 5502-5516.   DOI   ScienceOn
8 JOSIP LONCARIC (1987), "Normal forms of stiffness and compliance matrices", IEEE J. Robot. Autom., 3(6), 567-572.   DOI
9 Kang, D.O., Heo, S.J. and Kim, M.S. (2011), "Robust design optimization of suspension system by using target cascading method", Int. J. Aut. Tech., 13(1), 109-122.
10 Li, Y.M. and Liu, Y.G. (2011), "Active vibration control of a modular robot combining a BP neural network with a genetic algorithm", J. Vib. Control, 11(1), 3-17.
11 Li, Y.M. and Xu, Q.S. (2008), "Stiffness analysis for a 3-PUU parallel kinematic machine", Mech. Mach. Theory, 43(2), 186-200.   DOI   ScienceOn
12 Li, Y.M., Liu, Y.G., Liu, X.P. and Peng, Z.Y. (2004), "Parameter identification and vibration control in modular manipulators", IEEE/ASME T. Mech., 9(4), 700-705.   DOI   ScienceOn
13 Long, Z., He, G. and Xue, S. (2011), "Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array", IEEE Tran. Mag., 47(12), 4717-4724.   DOI
14 Metallidis, P., Verros, G. and Natsiavas, S. (2003), "Fault detection and optimal sensor location in vehicle suspensions", J. Vib. Control, 9(3-4), 337-359.   DOI   ScienceOn
15 Nguyen, Q.H. and Choi, S.B. (2009), "Optimal design of MR shock absorber and application to vehicle suspension", Smart Mater. Struct., 18(3), 035012.   DOI   ScienceOn
16 Nishimura, K. and Nozawa, T. (2007), "Development of suspension design technology applying principal elastic axes", SAE Technical Paper, 2007-01-0857.
17 Yun, Y. and Li, Y.M. (2011), "A general dynamics and control model of a class of multi-DOF manipulators for active vibration control", Mech. Mach. Theory, 46(10), 1549-1574.   DOI   ScienceOn
18 Patterson, T. and Lipkin, H. (1993), "A classification of robot compliance", J. Adv. Mech. Des. Syst., 115(3), 581-584.
19 Verros, G., Nastiavas, S. and Papadimitriou, C. (2005), "Design optimization of quarter-car models with passive and semi-active suspensions under random road excitation", J. Vib. Control, 11(5), 581-606.   DOI   ScienceOn