• Title/Summary/Keyword: Bus-bar

Search Result 78, Processing Time 0.033 seconds

A Study on the Contact Resistance according to the Tightening and Overlapping area of Bus Bar (부스 바의 체결 및 중첩 구간에 따른 접촉 저항에 관한 연구)

  • Kim, Hyun-Woo;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.56-62
    • /
    • 2018
  • The bus bar is an electrical connection widely used for the power supply of skyscrapers and power distribution and industrial equipment electrical panels in industrial plants. There are various materials to be considered in the design of the bus bar, such as material based on the use environment, the sectional area according to the power capacity, the length of the surface circumference, and the tightening method. Even with a bus bar manufactured to a size of sufficient power capacity in the design, if the actual tightening is incorrect, it may lead to fire due to deterioration. For these reasons, a variety of research on the temperature rise of the electrical contact point has continued. However, the temperature rise of the contacts is a consequence of the result, not a direct cause. In this paper, the influence of contact resistance on the fastening force and the overlapping section of the bus bar are investigated by measuring the change in resistance from building the specimen. A total of eight bus bar specimens were manufactured and measured. Resistance was measured by varying the clamping force and the interval between overlapping sections when the specimens were crossed. We propose a safe power connection model by analyzing the contribution of these factors to the actual contact resistance change.

An Estimation Technology of Temperature Rise in DSES using Three-Dimensional Coupled-Field Multiphysics (연성해석을 이용한 초고압 DSES 온도상승예측)

  • Yoon, Jeong-Hoon;Ahn, Heui-Sub;Choi, Jong-Ung;Park, Seok-Weon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.847_848
    • /
    • 2009
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule‘s losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in GIS..

  • PDF

Design and Fabrication of Light-Weight Composit Bus Bar (복합경량 부스바의 설계 및 제작)

  • Bae Joon-Han;Bea Duck-Kweon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.334-340
    • /
    • 2006
  • Copper is widely used in electric wire, cable, conductor in electric devices. As the demand for electric power is increasing rapidly, electric power devices are getting amazingly bigger and complicated. The using of light-weight conductor can reduce the size and making cost of the electric devices. In high-frequency application, Electric current in a conductor tends to shift to the surface of the conductor, resulting in an uneven current distribution in the inner conductor. In the extreme case the current may essentially concentrate in the 'skin' of the inner conductor as a surface current. In high frequency application, therefore, inner area of copper conductor may replace with aluminum conductor, which reduces the weight of conductor. This paper describes the manufacture and evaluation of composite conductors made of copper and aluminum. The optimum extruding ratio was 16 at $300^{\circ}C$. The electrical resistance of manufactured composite bus bar was $57{\mu}{\Omega}$ at DC and $49.5{\mu}\{Omega}$ at 300Hz.

Capacitor Bank Assisted Battery Fed Boost Converter for Self-electricity-generated Transportation Cart System (자가발전 이동 카트 시스템을 위한 배터리 - 캐패시터 뱅크를 갖는 부스트 컨버터)

  • Kong, Sung-Jae;Yang, Tae-Cheol;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A problem exists in the conventional transportation cart applications, in which an external power supply with mechanical contact connection (bus bar connection) is required to drive the motor. Therefore, continuous effort for maintenance is required, aside from the expensive bus bar connector. To solve this problem, a self-electricity-generated transportation cart system without bus bar has recently been introduced. In this system, a battery needs to store the power of the generated wheel, and a boost converter, which converts the low battery voltage to high bus voltage to drive the motor inverter, is necessary. However, since the instantaneous large current required for starting the motor is supplied from the battery, a battery with large size and volume should be adopted to withstand this large current. In this study, a boost converter that can supply a large instantaneous current by using super Capacitor string is proposed. The proposed converter can be realized with a small size and volume compared with the conventional battery-fed boost converter. Operational principles, analysis, and design of the proposed converter are presented, and experimental results are provided to validate the proposed converter.

Design of Crossbar Switch On-chip Bus for Performance Improvement of SoC (SoC의 성능 향상을 위한 크로스바 스위치 온칩 버스 설계)

  • Heo, Jung-Burn;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.684-690
    • /
    • 2010
  • Most of the existing SoCs have shared bus architecture which always has a bottleneck state. The more IPs are in an SOC, the less performance it is of the SOC, Therefore, its performance is effected by the entire communication rather than CPU speed. In this paper, we propose cross-bar switch bus architecture for the reduction of the bottleneck state and the improvement of the performance. The cross-bar switch bus supports up to 8 masters and 16 slaves and parallel communication with architecture of multiple channel bus. Each slave has an arbiter which stores priority information about masters. So, it prevents only one master occupying one slave and supports efficient communication. We compared WISHBONE on-chip shared bus architecture with crossbar switch bus architecture of the SOC platform, which consists of an OpenRISC processor, a VGA/LCD controller, an AC97 controller, a debug interface, a memory interface, and the performance improved by 26.58% than the previous shared bus.

Analysis on Electromagnetic Loss Characteristics of Bus bar and Enclosure according to the Specifications of Enclosures for a 24kV Switchgear (24kV급 배전반의 외함재질과 두께에 따른 Bus bar와 외함의 전자기 손실특성 분석)

  • Heo, Jeong Il;Hong, Jonggi;Kang, Hyoungku
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.181-185
    • /
    • 2013
  • This paper deals with the electromagnetic loss characteristics of enclosures for a 24kV high voltage switchgear by using a finite element method (FEM). A study on the electromagnetic characteristics of enclosures for a high voltage switchgear should be conducted to minimize the size and the temperature rising of a switchgear. Generally, the enclosures made by stainless steel are used to minimize the eddy current loss caused by the transporting current in Bus bars due to its non-magnetic characteristics although the price of stainless steel is expensive compared with other metal for enclosures. Therefore, a switchgear made by stainless steel enclosures could be fabricated as a small size and are applied to a switchgear in urban substations. On the contrary, the switchgear enclosures made by steel could be fabricated with relatively cheap manufacturing price. However, the temperature easily rises due to the transporting current in Bus bars because steel is a ferromagnetic material. Therefore, the size of a switchgear made by steel enclosures is relatively massive and installed in rural substations. In this paper, the electromagnetic losses in the enclosures of a switchgear according to various enclosure thicknesses are calculated and compared with each other. Especially, we proposed a hybrid type enclosures for a switchgear made by stainless steel (top and bottom enclosure) and steel (left and right enclosure). It is concluded that the cost electromagnetic performance of applying the hybrid type enclosure is favorable to develop a high voltage switchgear.

Investigation of the Feasibility of a Bus-bar coupled SFCL in the 154 kV KEPCO Grid (154 kV 초전도 한류기 모선연계 적용 연구)

  • 윤용범;현옥배;황시돌;김혜림
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.291-293
    • /
    • 2003
  • Applicability and economical feasibility of a Superconducting Fault Current Limiter (SFCL) have been investigated using the PSS/E simulation for a bus bar coupling at the real 154 ㎸ KEPCO power grid near Seoul. For the investigated substation, the maximum fault current exceeds the interruption rating of 4 circuit breakers (CB) out of 9 installed in the substation. The simulation showed that a SFCL installed in the bus tie position effectively limits the fault currents to save 4 CBs, which are to be replaced by ones of gloater interruption rating, otherwise. We suggest that the optimum resistance of the SFCL be 10 Ohm for the given grid.

  • PDF

Extremely large-area travelling-wave dielectrophoresis microbead separator using a multilayered bus bar (다층 버스 바를 이용한 극한 면적의 진행파 유전영동 미세입자 분류기)

  • Choi, Eun-Pyo;Kim, Byung-Kyu;Park, Jung-Yul
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • A Multilayered microelectrode design is presented for large area travelling wave dielectrophoresis (TwDEP) separators. Most of typical TwDEP chip has been arrayed with 1000 electrodes in $20{\times}20\;mm^2$. However, there is a limitation of the device area that is critical in throughput, because when the area of TwDEP becomes larger, the resistance of microelectrodes for bus bar is also increased. In this paper, we successfully developed a novel TwDEP chip with extremely large area ($31{\times}25\;mm^2$) by a unique multilayered bus bar design. According to the resistance simulation of our microelectrodes, it is possible to realize a TwDEP chip with an infinite longitudinal length. We demonstrated the feasibility of our suggestion with latex microbeads and showed the potential of extremely high throughput separation with TwDEP technique.

Process Optimization for Life Extension of Electropolishing Solution using Half Round Bus Bar (반구형 부스바를 이용한 전해연마액 수명연장을 위한 공정 최적화)

  • Kim, Soo Han;Lee, Seung Heon;Cho, Jaehoon;Lim, Dong-Ha;Choi, Joongso;Park, Chulhwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.447-453
    • /
    • 2016
  • In this study, we intended to extend the life of electropolishing solution through the reduction of electric resistance by improving the electrolysis efficiency. The optimum conditions were obtained by half round bus bar and Taguchi method. As the main control factors in the electropolishing process, current density, polishing time, electrolyte temperature and flow rate were selected. The electrolyte temperature was the most significant to the electrolysis efficiency. The optimum conditions for the life extension of electropolishing solution were as follows: current density, $45A/dm^2$; polishing time, 6 min; electrolyte temperature, $70^{\circ}C$; flow rate, 11 L/min. As a results of ANOVA of SN ratios, it was found that the electrolyte temperature was significant factor at the 90% confidence level.

Prediction of Temperature Rise in Power Appratus (초고압 전력기기의 온도상승 예측)

  • Kim, S.W.;Park, J.H.;Hahn, S.C.;Lee, B.Y.;Park, K.Y.;Song, W.P.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.113-115
    • /
    • 2001
  • In order to design the power appratus such ac bus bar, the current carrying ampacity should be determined, Since it is limited by maxium operating temperature, it is very important to predict temperature-rise on it. The main causes to raise temperature are joule's loss in the current carrying conductor and induced circulating and eddy current in the tank. The heat transfer is divided into convection and radiation on boundary, determining convection heat transfer coefficient is not easy. This paper propose a new technique that can be used to estimate the temperature rise in the extra high voltage bus bar. The heat transfer coefficient is analytically calculated by applying Nusselt Number depending on temperature as well as model geometry. The analytic method which use heat transfer coefficient is coupled with finite element method. The temperature distribution in the bus bar by the proposed method shows good agreement with experimental data.

  • PDF