• 제목/요약/키워드: Bus capacitor

검색결과 108건 처리시간 0.022초

인버터 직류링크 전압 평활용 전해 커패시터의 고장 진단 (Fault Diagnosis of a Electrolytic Capacitor for Inverter DC-Link Voltage Smoothing)

  • 이광운
    • 전력전자학회논문지
    • /
    • 제12권5호
    • /
    • pp.372-377
    • /
    • 2007
  • 본 논문은 가변속 구동 장치에서 직류링크 전압 평활용으로 사용되는 전해 커패시터의 새로운 고장 진단 방법을 제안한다. 전해 커패시터의 등가직렬저항은 직류링크 전압과 부하 전류로부터 직접 추정되고, 추정된 등가직렬저항으로부터 전해 커패시터의 상태가 결정된다. 온도 변동에 따른 등가직렬저항 변동을 보상하기 위해, 커패시터 주변의 PCB에 다이오드를 부착하고 다이오드의 전압 강하로부터 커패시터의 온도를 간접적으로 검출한다. 시뮬레이션 및 실험은 제안된 방식의 효용성을 보인다.

승압 초퍼 기능이 내장된 새로운 태양광 발전용 파워컨디셔너의 개발 (Development of Boost Chopper with Built New Renewable Energy in Grid-Connected Distributed Power System)

  • 문상필;이수행;김영문
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.361-367
    • /
    • 2014
  • This paper is related to a new solar power conditioner for a built-in step-up chopper function. In the first step-up chopper proposed solar PV power conditioner for mutually connected in series with the input voltage of the bypass diodes are respectively connected to the positive terminal should install the mutual boosting chopper diode connected in series with the boost chopper switching element between the two power supply and at the same time the first and the second was connected to a second diode and a resonance inductor and a snubber capacitor in series with each other. And the common connection point between the bypass diode and the step-up chopper and the step-up chopper diode common connection point of the switching elements of the input voltage was set to the boost inductor for storing energy. In addition, between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point of the first auxiliary diode and the second common connection point of the auxiliary diode was provided, the resonance capacitor. Between the step-up chopper and the step-up chopper diode and a switching element of a joint connection point and the common connection point of the resonance inductor snubber capacitor and connecting the third secondary diode, between two power supply lines is characterized by configuring the DC link capacitor bus lines in parallel. Therefore, it is possible to suppress the switching loss through, DC link bus lines, as well as there could seek miniaturization and weight reduction of the power conditioner itself by using a common capacitor of the non-polar non-polar electrolytic capacitor having a capacitor, the service life of the circuit can be extended and it is possible to greatly reduce the loss can be greatly improve the reliability of the product and the operation of the product itself.

불평형 배전계통에 있어서 유전알고리즘을 이용한 커패시터의 적정 배치 및 제어 (Optimal Capacitor Placement and Control using Genetic Algorithms in Unbalanced Distribution Systems.)

  • 김규호;유석구
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권7호
    • /
    • pp.839-846
    • /
    • 1999
  • This paper presents an efficient algorithm for determining the location, size and number of capacitors in unbalanced radial distribution system. The objective function formulated consists of two terms: cost for energy loss and cost related to capacitor purchase and capacitor installation. The cost function associated with capacitor placement is considered as step function due to banks of standard discrete capacities. Genetic algorithms(GA) are used to obtain the population is derived. The strings in each population consist of the bus number index and size of capacitors to be installed. In order to determine the number of capacitor placement, the length mutation operator is used. Its efficiency is proved through the application in unbalanced radial distribution systems made of 10 buses with 9 distribution lines and 25 buses with 24 distribution lines.

  • PDF

배전계통 커패시터 설치를 위한 전역적 최적화 기법 (A Global Optimization Technique for the Capacitor Placement in Distribution Systems)

  • 이상봉;김규호;이상근
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.748-754
    • /
    • 2008
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, a global optimization technique, which employing the chaos search algorithm, is applied to solve optimal capacitor placement problem with reducing computational effort and enhancing global optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

커패시터 뱅크 모듈 구성에 있어서 경제적인 크로바 시스템과 보호회로 (Low-cost crowbar system and protection scheme in capacitor bank module)

  • 임근희;조주현;이홍식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2089-2091
    • /
    • 2000
  • Pulsed power systems consist of a capacitor bank, an isolated high-voltage charging power-supply, high-current bus-work for charging and discharging and a control system. In such pulsed power systems, the operating-lifetime of the capacitors is closely dependent on the voltage reversal. Hence, most capacitor-discharging systems includes crowbar circuits. The crowbar circuit prevents the capacitor recharging with reverse voltage. Usually it consists of crowbar resistors and high pulse-current diode-stacks connected in series. The requirements for the diode-stacks are fast-recovery time and high-voltage and large-current ratings, which results in the high cost of the pulsed-power system. This paper presents a protection scheme of a charging and discharging system of a 500kJ capacitor bank using a low-cost crowbar circuit and safety-fuses.

  • PDF

Effect of Reconfiguration and Capacitor Placement on Power Loss Reduction and Voltage Profile Improvement

  • Hosseinnia, Hamed;Farsadi, Murteza
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권6호
    • /
    • pp.345-349
    • /
    • 2017
  • Reconfiguration is an important method to minimize power loss and load interruption by creating an optimal configuration of a system. Furthermore, by increasing demand and value of consumption, construction of new power plants can be postponed in networks by reconfiguration and proper arrangement of linkage switches. This method is feasible for radial networks, which create meshes of linkage switches. One convenient way to achieve a system with minimal power loss and interruption is to utilize capacitors. Optimal placement and sizing of capacitors in such applications is an important issue in the literature. In this paper, cat swarm optimization is introduced as a new metaheuristic algorithm to achieve this purpose. Simulation has been carried out in two feasible networks, 69-bus and 33-bus systems.

광대역 페라이트 비드 모델을 이용한 IC 전원단의 잡음해석 (Power Bus Noise Analysis on IC using Wide-Band Ferrite Bead Model)

  • 이신영;손경주;최우신;이해영
    • 한국전자파학회논문지
    • /
    • 제14권12호
    • /
    • pp.1276-1282
    • /
    • 2003
  • SMT 타입의 페라이트 비드(ferrite bead)는 전원단에서 발생되는 잡음(noise)이 회로 소자로 유입되는 것을 막기 위해 사용되는 소자로 병렬 캐패시터(capacitor)와 직렬 인덕터(inductor) 및 저항(resistor)을 이용하여 등가 모델화된다. 이와 같은 간단한 페라이트 비드의 등가 모델은 광대역 범위에서 측정 결과와 일치하지 않는다. 본 논문에서는 광대 역(50 MHz∼3 GHz)에서 정확한 페라이트 비드의 모델을 제시하고 페라이트 비드가 있을 때와 없을 때 전원단 잡음의 회로 소자에 미치는 영향을 고찰하였다.

자가 발전 이동 카트 시스템을 위한 입출력 Super-Capacitor를 갖는 회로 설계 및 구현 (Practical Design and Implementation of Circuits with I/O Super-Capacitor for self-Electricity-Generate Transportation Cart System)

  • 이용휘;박도일;황훈하;노정욱
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.88-90
    • /
    • 2020
  • 운송업의 시장 규모가 커짐에 따라 물건들을 분류하는 방식에 관한 연구들이 활발하게 이루어지고 있다. 그중 크로스벨트소터 방법이 많이 쓰이고 있다. 물건이 카트 위에서 이동하다가 원하는 위치에서 출하는 하는 방식이다. 현재 Bus bar와 collector의 접촉을 이용해 출하 시 전력을 공급하는 방법을 사용하고 있다. 이 방법은 유지와 관리에서 비용이 많이 든다는 단점이 있다. 본 논문에서는 Bus bar와 collector를 사용하지 않고, 카트에서 직접 물건 출하 시 필요한 전력을 만드는 방식에 대해 언급한다. 기존 배터리의 사용 대신, 온도와 수명, 전류방전에 이점을 가진 슈퍼캐패시터를 사용한다. 시뮬레이션을 통해 슈퍼캐패시터의 충전과 출력이 높은 상황에서 슈퍼캐패시터가 전력을 보상해주는 동작을 검증한다.

  • PDF

Optimal Location and Sizing of Shunt Capacitors in Distribution Systems by Considering Different Load Scenarios

  • Dideban, Mohammadhosein;Ghadimi, Noradin;Ahmadi, Mohammad Bagher;Karimi, Mohammmad
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1012-1020
    • /
    • 2013
  • In this work, Self-adaptive Differential Evolutionary (SaDE) algorithm is proposed to solve Optimal Location and Size of Capacitor (OLSC) problem in radial distribution networks. To obtain the SaDE algorithm, two improvements have been applied on control parameters of mutation and crossover operators. To expand the study, three load conditions have been considered, i.e., constant, varying and effective loads. Objective function is introduced for the load conditions. The annual cost is fitness of problem, in addition to this cost, CPU time, voltage profile, active power loss and total installed capacitor banks and their related costs have been used for comparisons. To confirm the ability of each improvements of SaDE, the improvements are studied both in separate and simultaneous conditions. To verify the effectiveness of the proposed algorithm, it is tested on IEEE 10-bus and 34-bus radial distribution networks and compared with other approaches.

Optimal Design Considerations of a Bus Converter for On-Board Distributed Power Systems

  • Abe, Seiya;Hirokawa, Masahiko;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.447-455
    • /
    • 2009
  • The power supply systems, which require low-voltage / high-current output has been changing from the conventional centralized power system to a distributed power system. The distributed power system consists of a bus converter and POL. The most important factor is the system stability in bus architecture design. The overlap between the output impedance of a bus converter input impedance of POL causes system instability and has been an actual problem. By increasing the bus capacitor, the system stability can be easily improved. However, due to limited space on the system board, the increasing of bus capacitors is impractical. An urgent solution of this issue is strongly desired. This paper presents the output impedance design for on-board distributed power system by means of three control schemes of a bus converter. The output impedance peak of the bus converter and the input impedance of the POL are analyzed and then conformed experimentally for stability criterion. Furthermore, the design process of each control schemes for system stability is proposed.