• 제목/요약/키워드: Bus Protection

Search Result 84, Processing Time 0.032 seconds

A Study of Voltage Control for Lower Side Parallel Transformer (병렬운전 변압기 전압제어 및 저압축 모선보호방식연구)

  • Yun, Gi-Seob;Baek, Seung-Do;Choi, Hyuck-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.233-236
    • /
    • 2001
  • Parallel operation scheme to several transformers is adopted because of the load increase, economic problem, or load shedding. For the transformer's parallel operation, loads proportional to each transformer's capacity must be allotted, and circulation currents must be limited as much as without causing any problem in a real operation. But, both transformers in parallel operation can be tripped when either faults at lower voltage side of a transformer or faults in a bus occurs. Therefore, parallel operation scheme to distribution transformers in Korea is not adopted in a normal state but only when loaded or load-shedded. These are due to the insufficiency of the construction in communication network and AVR scheme. Besides that, those are because bus bar protection scheme to lower voltage side of a transformer is not applied. In spite of enormous initial investment costs, advanced countries take so much account of power system reliability and stable supply that they adopt the parallel operation scheme in a normal state. One of the problems in parallel operation is the overheat of transformers due to the excessive circulation currents. This paper presents the scheme that controls voltages between both transformers using circulation currents that occurs in parallel operation.

  • PDF

Comparison of Fault Current Limiting Characteristics According to Facility in Power System (전력계통의 사고전류 저감 설비별 특성 비교)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.127-129
    • /
    • 2005
  • We investigated the fault current limiting characteristics according to the various facilities in power system. Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such as short circuits are increasing higher, which causes the ratings of circuit breakers(CBs) to increase. Upgrading or replacement of CBs is not difficult from the technical and economical point of view. Bus split is being adopted into a part of 154 kV power systems, but it has adverse effects such as overload to neighboring power systems, increased voltage fluctuation, and decreased power system stability. For 345 kV power systems, the bus split measure is not feasible and dc reactors are being suggested. The superconducting fault current limiter is a protection gear of new concept that limits fault current automatically in a few milliseconds. It can also provide the effect of CB capacity increase, relaxation of power machine criteria, enhancement in power system reliability, and flexible power system operation.

  • PDF

Development of a New Islanding Detection Method for Distributed Resources (분산 전원의 고립 운전 검출 기법의 개발)

  • Jang, Seong-Il;Kim, Gwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.506-513
    • /
    • 2001
  • The islanding detection for distributed resources (DR) becomes an important and emerging issue in power system protection since the distributed generator installations are rapidly increasing and most of the installed systems are interconnected with distribution network. In order to avoid the negative impacts from islanding operations of DR on protection, operation and management of distribution system, it is necessary to effectively detect the islanding operations of DR and rapidly disconnect it from distribution network. Generally, it is difficult to detect islanding operation by monitoring only one system parameter This paper presents a new logic based islanding detection method for distributed resources(DR) which are interconnected with distribution network. The proposed method detects the islanding operation by monitoring four system parameter: voltage variation, phase displacement, frequency variation, and the variation of total harmonic distortion(THD) of current; therefore, it effectively detects island operation of DR unit operating in parallel with the distribution network. We also verified the efficiency of the proposed algorithm using the radial distribution network of IEEE 34 bus model.

  • PDF

Performance inspection of smart superconducting fault current controller in radial distribution substation through PSCAD/EMTDC simulation

  • MassoudiFarid, Mehrdad;Shim, Jae Woong;Lee, Jiho;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.21-25
    • /
    • 2013
  • In power grid, in order to level out the generation with demand, up-gradation of the system is occasionally required. This will lead to more fault current levels. However, upgrading all the protection instruments of the system is both costly and extravagant. This issue could be dominated by using Smart Fault Current Controller (SFCC). While the impact of Fault current Limiters (FCL) in various locations has been studied in different situations for years, the performance of SFCC has not been investigated extensively. In this research, SFCC which has adopted the characteristics of a full bridge thyristor rectifier with a superconducting coil is applied to three main locations such as load feeder, Bus-tie position and main feeder location and its behavior is investigated through simulation in presence and absence of small Distributed Generation unit (DG). The results show a huge difference in limiting the fault current when using SFCC.

IEC61850 Process Bus Based Distributed Power Quality Monitoring (IEC61850 프로세서 버스 기반 분산형 전력품질감시)

  • Park, Jong-Chan;Kim, Byung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.13-18
    • /
    • 2007
  • In this paper, authors deal with an application of power quality monitoring using the Sampled Value which is described in the IEC61850 International Standard for substation communication. Firstly, while Merging Unit is designed as a process level device transmitting sensor data, the practical problems such as time delay compensation and optical fiber communication are issued. Secondly, the Sampled Value message which is proper to a power quality monitoring system is presented. Because the power quality monitoring system requests non time critical service comparing to protection and control applications, the Sampled Value service message structure is introduced to improve efficiency. At last, the power quality monitoring server having various power quality analysis functions is suggested to verify the performance of Merging Unit. With the diverse experiments, it is proved that the process bus distributed solution is flexible and economic for the power quality monitoring.

A New Formulation for Coordination of Directional Overcurrent Relays in Interconnected Networks for Better Miscoordination Suppression

  • Yazdaninejadi, Amin;Jannati, Jamil;Farsadi, Murtaza
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.169-175
    • /
    • 2017
  • A safe and reliable protection system in distribution networks, specifically, those hosting distribution generation units, needs a robust over-current protection scheme. To avoid unintentional DG disconnection during fault conditions, a protection system should operate quickly and selectively. Therefore, to achieve this aim, satisfying coordination constraints are important for any protection scheme in distribution networks; these pose a challenging task in interconnected and large-scale networks. In this paper, a new coordination strategy, based on the same non-standard time-current curve for all relays, in order to find optimal coordination of directional over-current relays, is proposed. The main aim is to reduce violations, especially miscoordination between pair relays. Besides this, the overall time of operation of relays during primary and backup operations should be minimized concurrently. This work is being tackled based on genetic algorithms and motivated by the heuristic algorithm. For the numerical analysis, to show the superiority of this coordination strategy, the IEEE 30-bus test system, with a mesh structure and supplemented with distributed generation, is put under extensive simulations, and the obtained results are discussed in depth.

Special Protection and Control Scheme for Transmission Line Overloading Elimination Based on Hybrid Differential Evolution/Electromagnetism-Like Algorithm

  • Hadi, Mahmood Khalid;Othman, Mohammad Lutfi;Wahab, Noor Izzri Abd
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1729-1742
    • /
    • 2017
  • In designing System Protection Schemes (SPSs) in power systems, protecting transmission network against extreme undesired conditions becomes a significant challenge in mitigating the transmission line overloading. This paper presents an intelligent Special Protection and Control Scheme (SPCS) using of Differential Evolution with Adaptive Mutation (DEAM) approach to obtain the optimum generation rescheduling to solve the transmission line overloading problem in system contingency conditions. DEAM algorithm employs the attraction-repulsion idea that is applied in the electromagnetism-like algorithm to support the mutation process of the conventional Differential Evolution (DE) algorithm. Different N-1 contingency conditions under base and increase load demand are considered in this paper. Simulation results have been compared with those acquired from Genetic Algorithm (GA) application. Minimum severity index has been considered as the objective function. The final results show that the presented DEAM method offers better performance than GA in terms of faster convergence and less generation fuel cost. IEEE 30-bus test system has been used to prove the effectiveness and robustness of the proposed algorithm.

Development of a Digital System for Protection and Control of a Substation Part 2 - Development of Fiber Optic Network (변전소의 보호.제어를 위한 디지탈 시스템 개발 PART 2 - 광 통신망 개발)

  • Kwon, W.H.;Park, S.H.;Kim, M.J.;Lee, Y.I.;Park, H.K.;Moon, Y.S.;Yoon, M.C.;Kim, I.D.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.362-364
    • /
    • 1992
  • In this paper, the development of a fiber optic network for an integrated digital protection relay system is described. The structure of the developed network is determined to loosen the optic requirements and to have good extensibility while providing sufficient functions for protection and control for substations. The network has a hierarchical structure with two levels. The upper level handles data for monitoring and control of the system with star topology. The lower level manages the real time data for bus protection with one-to-one connections. Communication flows of each level are described. The HDLC is employed as the network protocol.

  • PDF

Development of a Digital System for Protection and Control of a Substation Part 1 - Development of hardware (변전소의 보호.제어를 위한 디지탈 시스템 개발 PART 1 - 하드웨어 개발)

  • Kwon, W.H.;Lee, Y.I.;Park, H.K.;Park, S.H.;Kim, M.J.;Moon, Y.S.;Yoon, M.C.;Kim, I.D.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.359-361
    • /
    • 1992
  • This paper describes the development of an Integrated Digital Protection And Control System (IDPACS) for 345 KV substation. The developed IDPACS system containes digital protection units for transmission lines, delivery lines, transformers, bus, shunt reactors and Shunt capacitors. We deloped a Local Area Network (LAN) Which connects the digital protection units to the station computer for monitoring and control purposes.

  • PDF

Study on IEC 61850 Performance Testing Procedures of BF Protection IED (차단키 실패 보호 IED의 IEC 61850 시스템 성능 시험 절차서에 관한 연구)

  • Lee, Nam-Ho;Jang, Byung-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.59-66
    • /
    • 2008
  • Korea Electric Power Research Institute in charge of the power IT project "Development of Prototype for Advanced Substation Automation System based on the Digital Control Technology" is performing system verification. Breaker Failure protection IED can operate protection activity by communicating with other IEDs such as T/L IED, owing to IEC 61850 international standard and digital substation automation system. Accordingly, IED testing process should be changed from the conventional way by electrical contact test on individual IED to system based testing method by network communication. This paper describes how to test BF IED based on substation automation system and testing procedures using UML, which is used to implement S/W design.