• Title/Summary/Keyword: Burst pulse mode

Search Result 8, Processing Time 0.023 seconds

A Effect of Photo Dynamic Therapy for LAZER Wave Mode (방사모드에 따른 레이저 치료 효과)

  • Choi, Deog Su;Lim, Hyun Soo;Lee, Byung Koo;Kenar, Necla
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.134-139
    • /
    • 2016
  • US Food and Drug Administration (FDA) approved as a innovative cure for cancer, 1996. The effect is death of cancer cells through necrosis, apoptosis. Mainly the Continuous Wave mode (CW) use for PDT Laser. It sting, the question including itch, and etc. Reportedly, the increase of temperature with the perforated edema, ulcer, necrosis. The Thermal relaxation time and Oxygen recovery time is necessary. To give a normal oxygen recovery time of the cell, used Pulse mode. Progress, it was Burst Pulse mode when easing the thermal wake, the simplicity was secured, the PDT effect is good. Excepted in control group CW, Pulse, Burst pulse mode were incubated with various concentrations of 5-aminolevulinic acid hydrochloride (ALA-5). The tumor size reduction CW mode (44%), Pulse mode (48%), Burst pulse mode (53%) at 4 week after PDT with 0.3, 0.3, 0.3 mg/ml of ALA-5. After 4 hours, investigation of 100, 100, $100J/cm^2$ laser irradiation. The pulse mode was superior in expirimental data analysis. And it was the Burst pulse mode edge head of a family effect.

Analysis of SAR Processing Performances with FJB Waveforms (FJB 파형을 이용한 SAR 영상 생성 기법 분석)

  • Kim, Eun-Hee;Roh, Ji-Eun;Park, Joon-Yong;Kim, Soo-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.195-207
    • /
    • 2017
  • Recently, the SAR-GMTI mode is becoming increasingly essential in airborne radar systems. While SAR requires wideband waveforms for high resolution imaging, GMTI requires narrowband waveforms for doppler processing, which makes general LFM waveforms difficult to use for SAR-GMTI. This paper analyses the FJB(Frequency Jump Burst) waveform, which is studied for the SAR-GMTI waveform, and presents the method for the pulse compression and SAR image formation using FJB waveforms. Simulation results show that there is little difference in performances between the FJB waveform and the LFM waveform.

플라즈마 진단을 위한 다이오드레이저 기반의 Nd:YAG 레이저 개발

  • Yang, Jong-Geun;SHAHINUR, RAHMAN MD;SURESH, RAI;AHMED, MUHAMMAD WAQAR;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.201.1-201.1
    • /
    • 2016
  • 본 연구에서는 펄스형으로 운전하는 플라즈마를 대상으로 하거나 플라즈마 특성의 빠른 변동을 파악하기 위해 1 kHz 이상의 반복율, 5 pulse burst mode와 2 J/pulse 이상의 발진특성을 갖는 Nd:YAG 레이저를 기반으로 하는 광원을 개발하기 위하여 레이저와 전원장치를 설계하였다. 전체 시스템은 MOPA(Master Oscillator Power Amplifier)형태로 구성하고 발진기는 FBG(Fiber Bragg Grating)을 반사경으로 사용한 Yb fiber 레이저를 설계하였다. 또한 설계한 레이저를 작동시킬 전원장치를 연구하였다. 정확한 스위칭과 턴온, 턴오프를 구현하기 위하여 IGBT 스위치를 적용하였고 적절한 저항을 조합하여 전류가 시간에 따라 상승하다가 스위치 턴오프에 급격히 감소하는 형태의 레이저 다이오드 구동에 적합한 삼각파와 비슷한 전류파형을 설계하였다. 추후 설계한 두 장치를 제작하여 테스트를 거친 후, VEST 내부 플라즈마 진단에 적용할 계획이다.

  • PDF

GafChromic RTQA Film Dosimetry for Laser Beam with Photodynamic Therapy (GafChromic RTQA Film을 이용한 광역학적 치료용 레이저의 선질 측정)

  • Lee, Byung Koo;Lim, Hyun Soo;Kenar, Necla
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose: The purposes of this study were to measure the dose distribution of Photodynamic therapy(PDT) laser with 635 nm wavelength using GafChromic film. Method & Result: We made each output 300 J by changing mW and sec using the laser beam radiation mode such as C.W(Continuous Wave) mode, Pulse mode and Burst Pulse mode and measured the does at 0 mm and 5 mm of distance from optic fiber catheter end to the film, and at 5 mm distance by changing the angle of the end of the optic fiber catheter as $0^{\circ}$ and $0.5^{\circ}$. The radiated film was scanned and OD(Optical Density) was compared. And two-dimensional isodose curves were obtained and the consistency of shapes was compared. It was confirmed that there was consistency between optic density and the dose radiated on the film when we radiated GafChromic film by changing distance and angle of 300 J output in each radiation mode coordinating mW and sec. Conclusion: In this study, we could identify the stability according to changes in laser beam modes, changes in output according to distance, changes in uniformity according to angle, and beam profiles using GafChromic film, and we could also get two-dimensional isodose curve. It was found that small change in the distance and angle that is made when optic fiber catheter was contacted on the treatment area did not make big effects on the output of beam and the uniformity of dose, and it was also found that GafChromic film could be utilized for the purpose of QA of PDT laser beam.

DCM DC-DC Converter for Mobile Devices (모바일 기기용 DCM DC-DC Converter)

  • Jung, Jiteck;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.319-325
    • /
    • 2020
  • In this paper, a discontinuous-conduction mode (DCM) DC-DC buck converter is presented for mobile device applications. The buck converter consists of compensator for stable operations, pulse-width modulation (PWM) logic, and power switches. In order to achieve small hardware form-factor, the number of off-chip components should be kept to be minimum, which can be realized with simple and efficient frequency compensation and digital soft start-up circuits. Burst-mode operation is included for preventing the efficiency from degrading under very light load condition. The DCM DC-DC buck converter is fabricated with 0.18-um BCDMOS process. Programmable output with external resistors is typically set to be 1.8V for the input voltage between 2.8 and 5.0V. With a switching frequency of 1MHz, measured maximum efficiency is 92.6% for a load current of 100mA.

The Otimization of Laser System for Photodynamic Therapy of Malignancies (악성종양의 광역학적 치료를 위한 레이저 시스템의 최적화)

  • 임현수;김주옥;황인경
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.51-60
    • /
    • 2004
  • In this paper, we optimized the PDT laser system to improve the therapy effects of malignancies. In order to optimize, the variation of laser output and specific wavelength shift have to reduced. To improve the PDT therapy clinician require the diverse radiation mode which irradiate the tumor surface. Continuous wave mode that general application may causes tissue thermal damage not only to tumor tissue, but also to normal tissue. In this paper, therefore, we suggested new technique for radiation method to improved PDT effects and prevented to the thermal effects for the tissue. In the experimental we verified the stability of wavelength, laser output stability and proved the reduced thermal effects to the tissue using the pulse & burst radiation modes in vitro.

The Development of 63nm Diode Laser System for Photodynamic Therapy of Cancer (광역학적 암치료를 위한 635nm 다이오드 레이저 시스템 개발)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.319-328
    • /
    • 2003
  • The purpose of this paper is to develop a medical laser system using the semiconductor diode laser in order to photodynamic cancel therapy as a light source. The ideal light source for photodynamic therapy would be a homogeneous nondiverging light with variable spot size and specific wavelength with stability. After due consideration in this point, in this paper, we used a diode laser resonator of 635nm wavelength. The development laser system have a statistical laser out beam with accuracy control using the constant current control of method and clinic-friendly with compact. In order to protect the diode resonator from the over-current, the rush-current and electrical fault, we specially designed. The most importance therapeutic factor are the radiation mode for cancer therapy. So we developed the radiation mode of CW(Continuous Wave), long pulse, short pulse, and burst pulse and can adjust the exposure time from several milli-second to several minute. The experimental result shows that laser beam power was increased linear from 10mW to 300mW according to the increasing input current and the increasing exposure time. The developed new compact diode laser system have a stability of output power and specific wavelength with easy control and transportable for many applications of PDT.

Spinal cord stimulation in chronic pain: technical advances

  • Isagulyan, Emil;Slavin, Konstantin;Konovalov, Nikolay;Dorochov, Eugeny;Tomsky, Alexey;Dekopov, Andrey;Makashova, Elizaveta;Isagulyan, David;Genov, Pavel
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Chronic severe pain results in a detrimental effect on the patient's quality of life. Such patients have to take a large number of medications, including opioids, often without satisfactory effect, sometimes leading to medication abuse and the pain worsening. Spinal cord stimulation (SCS) is one of the most effective technologies that, unlike other interventional pain treatment methods, achieves long-term results in patients suffering from chronic neuropathic pain. The first described mode of SCS was a conventional tonic stimulation, but now the novel modalities (high-frequency and burst), techniques (dorsal root ganglia stimulations), and technical development (wireless and implantable pulse generator-free systems) of SCS are becoming more popular. The improvement of SCS systems, their miniaturization, and the appearance of new mechanisms for anchoring electrodes results in a significant reduction in the rate of complications and revision surgeries, and the appearance of new waves of stimulation allows not only to avoid the phenomenon of addiction, but also to improve the long-term results of chronic SCS. The purpose of this review is to describe the current condition of SCS and up-to-date technical advances.