• Title/Summary/Keyword: Burning

Search Result 1,946, Processing Time 0.03 seconds

A Review of Burning Mouth Disorders (구강작열감질환에 관한 고찰 및 의료분쟁 증례보고)

  • Hur, Yun-Kyung;Jung, Jae-Kwang;Choi, Jae-Kap
    • The Journal of the Korean dental association
    • /
    • v.48 no.9
    • /
    • pp.688-695
    • /
    • 2010
  • Burning mouth disorders (sometimes referred to as burning mouth syndrome) are characterized by a burning sensation in the tongue or other oral sites, usually in the absence of clinical and laboratory findings. Affected patients often present with multiple oral complaints, including burning, dryness and taste alterations. Burning mouth complaints are reported more often in women, especially after menopause. Typically, patients awaken without pain, but report increasing symptoms through the day and into the evening. Conditions that have been reported in association with burning mouth syndrome include chronic anxiety or depression, various nutritional deficiencies, diabetes and changes in salivary function. However, these conditions have not been consistently linked with the syndrome, and their treatment has had little impact on burning mouth symptoms. Recent studies have pointed to dysfunction of several cranial nerves associated with taste sensation as a possible cause of burning mouth disorders. The most common central mechanism that likely explains burning mouth disorders is a centrally mediated continuous neuropathic pain. Given in low dosages, benzodiazepine, tricyclic antidepressants or anticonvulsants may be effective in patients with burning mouth disorders.

Measuring Burning rate of Solid propellent using Small Propulsion Motor (소형 추진기관을 이용한 고체 추진제의 연소속도 측정)

  • Jeong, Chul-Young;Kim, Han-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.228-231
    • /
    • 2011
  • Burning rate of a propellent is an essential factor when designing a propulsion system. In order to come up with burning rate, first we need to design and build propellent grain to get neutral pressure curve. Then check the pressure with ground test and calculate the burning rate using burning rate equation. This burning rate is then compared to the burning rate of a propellent which was resulted from making a standardized specimen and combusting it using a strand burner. An accurate burning rate is calculated after comparing those two burning rates. For this study, compact propulsion system was designed, produced, tested and analyzed in order to get burning rates, an essential factor in propulsion system design, in an effective way.

  • PDF

A Study on the Source Profile Development for Fine Particles (PM2.5) Emitted from Biomass Burning (Biomass-burning에서 배출되는 미세입자 (PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.4
    • /
    • pp.384-395
    • /
    • 2012
  • This study was performed to develop the source profiles for fine particles ($PM_{2.5}$) emitted from the biomass burning. The multi-method research strategy included a usage of combustion devices such as field burning, fireplace, and residential wood burning to burn rice straw, fallen leaves, pine tree, and oak tree. The data were collected from multiple sources and measured water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, it turned out that OC (34~67%) and EC (1.2~39%) are the major components emitted from biomass burning. In the case of burning rice straw at field burning, OC (66.6%) was the most abundant species, followed by EC (4.3%), $Cl^-$ (3.6%), Cl (2.1%), and $SO^{2-}_4$(1.9%). Burning rice straw, fallen leaves, pine tree, and oak tree at fireplace, the amount of OC was 58.5%, 52.7%, 52.5%, and 61.2%, and that of EC was 1.2%, 18.4%, 36.5%, and 2.7%, respectively. The ratio of OC for the burning of pine tree and oak tree from the residential wood burning device was 56.9% and 34.3%, and that of EC was 25% and 38.6%, respectively. Applying the measured data with respect to the proportion of components emitted from biomass burning to reference model, it turned out that self-diagnosed result was appropriate level, and the result based on the model is in highly corresponding to actual timing of biomass burning.

Experimental Study on Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

  • Kido, Hiroyuki;Nakashima, Kenshiro;Nakahara, Masaya;Hashimoto, Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • In order to elucidate the turbulent burning velocity of the two-component fuel mixtures, the lean and rich two-component fuel mixtures, where methane, propane and hydrogen were used as fuels, were prepared keeping the laminar burning velocity nearly the same value. Clear difference in the measured turbulent burning velocity at the same turbulence intensity can be seen among the two-component fuel mixtures with different addition rate of fuel, even under nearly the same laminar burning velocity. The burning velocities of lean mixtures change almost monotonously as changing addition rate, those of rich mixtures, however, do not show such a monotony. These phenomena can be explained qualitatively from the local burning velocities, estimated by considering the preferential diffusion effect for each fuel component. In addition, a prediction expression of turbulent burning velocity proposed for the one-component fuel mixtures can be applied to the two-component fuel mixtures by using the estimated local burning velocity of each fuel mixture.

  • PDF

Effect of Gabapentin for the Treatment of Burning Mouth Syndrome Comorbid with Depression in Postmenopausal Women (폐경 후 여성의 우울증에 수반된 구강 작열감 증후군(Burning Mouth Syndrome)에 대한 Gabapentin의 효과)

  • Kim, Min-Jeong;Kim, Hyun-Seuk;Park, Si-Sung
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.22 no.2
    • /
    • pp.138-142
    • /
    • 2014
  • Burning mouth syndrome is characterized by intra-oral burning sensation without any organic abnormalities. This syndrome is associated with various etiological factors such as neuropathy, malnutrition, menopause and depression. Several medications have been tried for the treatment. Those are analgesics, hormones, anticonvulsants and antidepressants. However, optimal effective pharmacologic treatment remains still unknown. The purpose of this case study is to report the clinical effectiveness of gabapentin in the treatment of burning mouth syndrome in postmenopausal women with comorbid depression. We report two menopausal women. Antidepressants were effective for improving depressive symptoms, but it had no effects on intra-oral burning sensation. Gabapentin reduced intra-oral burning sensation effectively for all two patients. One patient reported 55% reduction(a decrease from 9 to 4 on VAS), the other patient reported 35% reduction(from 8 to 5) of the intra-oral burning sensation during 16 weeks. The minimal effective daily dose of gabapentin was 300mg. This study suggests that gabapentin might be a useful, effective therapeutic option for treating burning mouth syndrome in postmenopausal women with comorbid depression. Further prospective clinical studies are needed to investigate the effectiveness of gabapentin in patients with burning mouth syndrome.

  • PDF

Chemical Composition of Post-Harvest Biomass Burning Aerosols in Gwangju, Korea

  • Kim, Young-J.;Ryu, Seong-Y.;Kang, Gong-U.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.79-84
    • /
    • 2003
  • The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural area in Korea. 12-hr integrated intensive sampling of $PM_{10}$ and $PM_{2.5}$ biomass burning aerosols had been conducted continuously at Gwangju, Korea 4-15 June 2001 and 8 October-14 November 2002. The fine and coarse particles of biomass burning aerosols were collected for mass, ionic, elemental, and carbonaceous species analysis. Average fine and coarse mass concentrations of biomass burning aerosols were measured to be 129.6, 24.2 ${{\mu}gm}^{-3}$ in June 2001 and 47.1, 33.2 ${{\mu}gm}^{-3}$ in October to November 2002, respectively. Exceptionally high level of $PM_{2.5}$ concentration up to 157.8 ${{\mu}gm}^{-3}$ well above 24-hour standard was observed during the biomass burning event days under stagnant atmosphere condition. During biomass burning periods dominant ionic species were $Cl^{-}$, ${NO_3}^{-}$, ${SO_4}^{2-}$, and ${NH_4}^{+}$ in fine and coarse mode. In the fine mode $Cl^{-}$ and ${KCl}^{+}$ were unusually rich due to the high content of the semiarid vegetation. High OC values and OC/EC ratios were also measured during the biomass burning periods. Increased amount of fine aerosols with high enrichment, which were originated from biomass burning of post-harvest agricultural waste, resulted in extremely severe particulate air pollution and visibility degradation in the region. Particulate matters from open field burning of agricultural wastes cause great adverse impact on local air quality and regional climate.

  • PDF

The study of characterization about magnesium alloy eye-glasses case by anodizing and mixed method (anodizing+burning) (Anodizing과 Burning 공정 혼합으로 표면처리 된 마그네슘합금(AZ31) 안경테 표면의 특성 연구)

  • Yu, Jae-Yong;Lim, Jin-Hwan;Yu, Jae-In;Kim, Jin-Hie;Park, Chang-Hun;Kim, Ki-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.231-234
    • /
    • 2007
  • During the anodizing and burning anodizing process, appreciable amounts of pores were generated on the surface of magnesium (Mg) alloy which deteriorate the quality of the alloy. However, additional burning process subsequent to the anodizing process reduces the density of pores on the surface. We found that additional burning process can increase the quality of Mg alloy. In addition we found that burning process increases homogeneity of the film thickness as well.

Chemical Compositions of Primary PM2.5 Derived from Biomass Burning Emissions

  • Ichikawa, Yujiro;Naito, Suekazu
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.79-95
    • /
    • 2017
  • A number of field studies have provided evidence that biomass burning is one of the major global sources of atmospheric particles. In this study, we have collected $PM_{2.5}$ emitted from biomass burning combusted at open burning and laboratory chamber situations. The open burning experiment was conducted with the cooperation of 9 farmers in Chiba Prefecture, Japan, while the chamber experiment was designed to evaluate the characteristics of chemical components among 14 different plant species. The analyzed categories were $PM_{2.5}$ mass concentration, organic carbon (OC), elemental carbon (EC), ionic components ($Na^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), water-soluble organic carbon (WSOC), water-insoluble inorganic carbon (WIOC), char-EC and soot-EC. OC was the dominant chemical component, accounting for the major fraction of primary $PM_{2.5}$ derived from biomass burning, followed by EC. Ionic components contributed a small portion of $PM_{2.5}$, as well as that of $K^+$. In some cases, $K^+$ is used as biomass burning tracer; however, the observations obtained in this study suggest that $K^+$ may not always be suitable as a tracer for biomass burning emissions. Also, the results of all the samples tested indicate relatively low values of char-EC compared to soot-EC. From our results, careful consideration should be given to the usage of $K^+$ and char-EC as indicators of biomass burning. The calculated ratios of WSOC/OC and WIOC/OC were 55.7% and 44.3% on average for all samples, which showed no large difference between them. The organic materials to OC ratio, which is often used for chemical mass closure model, was roughly estimated by two independent methods, resulting in a factor of 1.7 for biomass burning emissions.

An Ultrasonic Measurement Model to Predict a Reflected Signal from Non-Linear Burning Surface of Solid Propellants

  • Song, Sung-Jin;Kim, Hak-Joon;Oh, Hyun-Taek;Lee, Sang-Won;Song, Seung-Hyun;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.531-540
    • /
    • 2007
  • While determination of the solid propellant burning rates by ultrasound, it has been reported that the frequent data scatters were caused by two major factors; 1) variation in the acoustical properties, and 2) non-linear burning of a solid propellant sample under investigation. This work is carried out for the purpose of investigating the effect of non-linear burning of solid propellant samples. Specifically, we propose an ultrasonic measurement model that can predict the reflections from solid propellant surfaces with non-linear burning by the combination of two ingredients; 1) a pulse-echo ultrasonic measurement model for a planar, circular reflector imbedded in the second medium in an immersion set-up, and 2) an efficient model of non-linear burning surfaces with a number of small, planar circles. Then, we demonstrate the capability of the proposed measurement model by simulation of the surface echo signals from four different burning surfaces that have been generated by the combination of two factors; the base shape (flat or paraboloidal) and the surface roughness (perfectly smooth or randomly rough). From the simulation presented here, we can confirm the fact that the non-linear burning of the propellant can cause the waveform change of the burning surface echo and the corresponding spectrum variation.

Examination of Optimal Reaction Mechanism in Oxygen Enriched Condition (산소부화조건에서의 반응기구 검토)

  • Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.247-253
    • /
    • 2003
  • Burning velocities of conventional methane flame and oxygen-enriched methane flame were determined by experimentally and numerically at atmospheric pressure in order to examine the validity of various detailed reaction mechanisms in oxygen-enriched flame. The schlieren system was adopted to obtain the burning velocity of flame stabilized on a circular nozzle. Premix code was employed to compute the burning velocity. Three reaction mechnisms were tested at several oxygen enrichment level, whose names are GRI 3.0, MB(Miller and Bowman) and LKY(Lee Ki Yong) reaction mechanism. Sensitivity analysis was also performed to discriminate dominantly affecting reaction on burning velociy. The results showed that conventional reaction mechanisms originally based on methane-air flame were underpredict the burning velocity at high oxygen-enrichment level. The modified GRI 3.0 reaction mechanism based on our experimental results was suggested and shows a good agreement in estimating the burning velocity and the NO number density of oxygen-enriched flame.

  • PDF