• Title/Summary/Keyword: Burnable poison

Search Result 25, Processing Time 0.026 seconds

Novel homogeneous burnable poisons in pressurized water reactor ceramic fuel

  • Dodd, Brandon;Britt, Taylor;Lloyd, Cody;Shah, Manit;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2874-2879
    • /
    • 2020
  • Due to excess reactivity, fresh nuclear fuel often contains burnable poisons. This research looks at six different burnable poisons and their impacts on reactivity, material attractiveness, and waste management. An MCNP simulation of a PWR fuel pin was performed with a fuel burnup of 60 GWd/MTHM to determine when each burnable poison fuel type would decrease below a k of 1. For determining the plutonium material attractiveness in each burnable poison fuel type, the plutonium isotopic content of the used fuel was evaluated using Bathke's Figure of Merit formula. For the waste management analysis, the thermal output of each burnable poison fuel type was determined through ORIGEN decay simulations at 100 and 300 years after being discharged from the core. The performance of all six burnable poisons varied over the three criteria considered and no single burnable poison performed best in all three considerations.

Implementation of Strength Pareto Evolutionary Algorithm II in the Multiobjective Burnable Poison Placement Optimization of KWU Pressurized Water Reactor

  • Gharari, Rahman;Poursalehi, Navid;Abbasi, Mohammadreza;Aghaie, Mahdi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1126-1139
    • /
    • 2016
  • In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor ($K_{eff}$) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.

Nuclear Design Feasibility of the Soluble Boron Free PWR Core

  • Kim, Jong-Chae;Kim, Myung-Hyun;Lee, Un-Chul;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.342-352
    • /
    • 1998
  • A nuclear design feasibility of soluble boron free(SBF core for the medium-sized(600MWe) PWR was investigated. The result conformed that soluble boron free operation could be performed by using current PWR proven technologies. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with burnable poison and control rod absorber material. In order to control excess reactivity, large amount of gadolinia integral burnable poison rods were used and B4C was used as a control rod absorber material. For control of bottom shift axial power shape due to high temperature feedback in SBF core, axial zoning of burnable poison was applied to the fuel assemblies design. The combination of enrichment and rod number zoning for burnable poison could make an excess reactivity swing flat within around 1% and these also led effective control on axial power offset and peak pin power, The safety assessment of the designed core was peformed by the calculation of MTC, FTC and shutdown margin. MTC in designed SBF core was greater around 6 times than one of Ulchin unit 3&4. Utilization of enriched BIO(up to 50w1o) in B4C shutdown control rods provided enough shutdown margin as well as subcriticality at cold refueling condition.

  • PDF

Burnable poison optimized on a long-life, annular HTGR core

  • Sambuu, Odmaa;Terbish, Jamiyansuren
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3106-3116
    • /
    • 2022
  • The present work presents analysis results of the core design optimizations for an annular, prismatic High Temperature Gas-cooled Reactor (HTGR) with passive decay-heat removal features. Its thermal power is 100 MWt and the operating temperature is 850 ℃ (1123 K). The neutronic calculations are done for the core with heterogeneous distribution of fuel and burnable poison particles (BPPs) to flatten the reactivity swing and power peaking factor (PPF) during the reactor operation as well as for control rod (CR) insertion into the core to restrain a small excess reactivity less than 1$. The next step of the study is done for evaluation of core reactivity coefficient of temperature.

Feasibility of combinational burnable poison pins for 24-month cycle PWR reload core

  • Dandi, Aiman;Lee, MinJae;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.238-247
    • /
    • 2020
  • The Burnable Poison (BP) is very important for all Light Water Reactors in order to hold-down the initial excess reactivity and to control power peaking. The use of BP is even more essential as the excess reactivity increases significantly with a longer operation cycle. In this paper a feasibility study was conducted in order to investigate the benefits of a new combinational BP concept designed for 24-month cycle PWR core. The reference designs in this study are based on the two Korean fuel assemblies; 17 × 17 Westinghouse (WH) design and 16 × 16 Combustion Engineering (CE) design. A modification was done on these two designs to extend their cycle length from 18 months into 24 months. DeCART2D-MASTER code system was used to perform assembly and core calculations for both designs. A preliminary test was conducted in order to choose the best BP suitable for 24-month as a representative for single BP concept. The comparison between the results of two concepts (combinational BP concept and single BP concept) showed that the combinational BP concept can replace the single BP concept with better performance on holding down the initial excess reactivity without violating the design limitations.

THERMAL-HYDRAULIC CHARACTERISTICS FOR CANFLEX FUEL CHANNEL USING BURNABLE POISON IN CANDU REACTOR

  • BAE, JUN HO;JEONG, JONG YEOB
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.559-566
    • /
    • 2015
  • The thermalehydraulic characteristics for the CANadian Deuterium Uranium Flexible (CANFLEX)-burnable poison (BP) fuel channel, which is loaded with a BP at the center ring based on the CANFLEX-RU (recycled uranium) fuel channel, are evaluated and compared with that of standard 37-element and CANFLEX-NU (natural uranium) fuel channels. The distributions of fuel temperature and critical channel power for the CANFLEX-BP fuel channel are calculated using the NUclear Heat Transport CIRcuit Thermohydraulics Analysis Code (NUCIRC) code for various creep rate and burnup. CANFLEX-BP fuel channel has been revealed to have a lower fuel temperature compared with that of a standard 37-element fuel channel, especially for high power channels. The critical channel power of CANFLEX-BP fuel channel has increased by about 10%, relative to that of a standard 37-element fuel channel for 380 channels in a core, and has higher value relative to that of the CANFLEX-NU fuel channel except the channels in the outer core. This study has shown that the use of a BP is feasible to enhance the thermal performance by the axial heat flux distribution, as well as the improvement of the reactor physical safety characteristics, and thus the reactor safety can be improved by the use of BP in a CANDU reactor.

Neutronics design of VVER-1000 fuel assembly with burnable poison particles

  • Tran, Hoai-Nam;Hoang, Van-Khanh;Liem, Peng Hong;Hoang, Hung T.P.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1729-1737
    • /
    • 2019
  • This paper presents neutronics design of VVER-1000 fuel assembly using burnable poison particles (BPPs) for controlling excess reactivity and pin-wise power distribution. The advantage of using BPPs is that the thermal conductivity of BPP-dispersed fuel pin could be improved. Numerical calculations have been conducted for optimizing the BPP parameters using the MVP code and the JENDL-3.3 data library. The results show that by using $Gd_2O_3$ particles with the diameter of $60{\mu}m$ and the packing fraction of 5%, the burnup reactivity curve and pin-wise power distribution are obtained approximately that of the reference design. To minimize power peaking factor (PPF), total BP amount has been distributed in a larger number of fuel rods. Optimization has been conducted for the number of BPP-dispersed rods, their distribution, BPP diameter and packing fraction. Two models of assembly consisting of 18 BPP-dispersed rods have been selected. The diameter of $300{\mu}m$ and the packing fraction of 3.33% were determined so that the burnup reactivity curve is approximate that of the reference one, while the PPF can be decreased from 1.167 to 1.105 and 1.113, respectively. Application of BPPs for compensating the reduction of soluble boron content to 50% and 0% is also investigated.

Selection of burnable poison in plate fuel assembly for small modular marine reactors

  • Xu, Shikun;Yu, Tao;Xie, Jinsen;Li, Zhulun;Xia, Yi;Yao, Lei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1526-1533
    • /
    • 2022
  • Small modular reactors have garnered considerable attention in the recent years. Plate fuel elements exhibit a good application prospect in small modular pressurized water reactors for marine applications. Further, improved economic benefits can be achieved by extending the core lifetime of small modular reactors. However, it is necessary to realize a large initial residual reactivity for achieving a relatively long burnup depth finally. Thus, the selection of a suitable burnable poison (BP) is a crucial factor that should be considered in the design of small modular reactors. In this study, some candidate BPs are selected to realize the effective control of reactivity. The results show that 231Pa2O3, 240Pu2O3, 167Er2O3, PACS-J, and PACS-L are ideal candidates of BP, and since the characteristics of BP can increase the final burnup depth of assembly, the economic benefits are gained. Additionally, an optimal combination scheme of BPs is established. Specifically, it is proved that through a reasonable combination of BPs, a low reactivity fluctuation during the lifetime can be achieved, leading to a large final burnup depth.

Axial BP Zoning for the Soluble Boron Free Operation in Medium-Sized PWR

  • Kim, Jong-Chae;Kim, Myung-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.59-64
    • /
    • 1996
  • Feasibility of soluble boron free operation for the medium-sized commercial reactors was investigated. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with gadolinia burnable poison-high Gd enrichment and axial poison zoning. CASMO and NECTA-C code system checked axial offset and peaking factors as fuels burned up. A core with complex axial burnable poison zoning satisfied design goals - small excess reactivity for 18 month cycle. Therefore, critical bank positioning for three control rod banks was sought with ease. A.O. value and Fq value were kept within the safety limit.

  • PDF

Analysis of Burnable Poison Effect on Power Distribution using Power Sensitivity Coefficient Concept (출력민감도 계수개념을 이용한 가연성 독붕봉이 출력분포에 미치는 영 향의 분석)

  • Yi, Yu-Han;Oh, Soo-Youl;Seong, Seung-Hwan;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 1988
  • The low leakage leading pattern has features as the placement of some fresh fuel assemblies in the core interior to reduce the neutron fluence on the pressure vessel and to enhance the neutron economics. But as fresh fuel assemblies are loaded in the core interior, the local power tends to exceed safety limit due to the high reactivity of the fresh assemblies. Therefore, a large number of burnable poisons must be utilized in a low leakage scheme to suppress the high assembly power as well as the excess reactivity. In this study the effects of burnable poisons are treated as a perturbation on the power distribution, and the 'Power Sensitivity Coefficient' concept is adopted. An application study is performed for cycle 1 of the Korea Nuclear Unit-7 (KNU-7) to justify the usefulness of the reverse depletion method coupled with the above concept. To obtain the optimal burnable poision distribution at the given burnup step, the linear programming technique is adopted. The result shows maximum 4.5% error in the amount of burnable poisons between the calculated and the reference values. It is concluded that the design methodology which consists of the reverse depletion, the power sensitivity coefficient concept, and the linear programming technique can be used to find the optimal turnable poison distribution.

  • PDF