• Title/Summary/Keyword: Burkholderia gladioli

Search Result 21, Processing Time 0.027 seconds

Genomics-based Sensitive and Specific Novel Primers for Simultaneous Detection of Burkholderia glumae and Burkholderia gladioli in Rice Seeds

  • Lee, Chaeyeong;Lee, Hyun-Hee;Mannaa, Mohamed;Kim, Namgyu;Park, Jungwook;Kim, Juyun;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.490-498
    • /
    • 2018
  • Panicle blight and seed rot disease caused mainly by Burkholderia glumae and Burkholderia gladioli is threatening rice cultivation worldwide. The bacteria have been reported as seed-borne pathogens from rice. Accurate detection of both pathogens on the seeds is very important for limiting the disease dissemination. Novel primer pairs targeting specific molecular markers were developed for the robust detection of B. glumae and B. gladioli. The designed primers were specific in detecting the target species with no apparent cross-reactions with other related Burkholderia species at the expected product size. Both primer pairs displayed a high degree of sensitivity for detection of B. glumae and B. gladioli separately in monoplex PCR or simultaneously in duplex PCR from both extracted gDNA and directly preheated bacterial cell suspensions. Limit of detection was as low as 0.1 ng of gDNA of both species and $3.86{\times}10^2cells$ for B. glumae and $5.85{\times}10^2cells$ for B. gladioli. On inoculated rice seeds, the designed primers could separately or simultaneously detect B. glumae and B. gladioli with a detection limit as low as $1.86{\times}10^3cells$ per rice seed for B. glumae and $1.04{\times}10^4cells$ per rice seed of B. gladioli. The novel primers maybe valuable as a more sensitive, specific, and robust tool for the efficient simultaneous detection of B. glumae and B. gladioli on rice seeds, which is important in combating rice panicle blight and seed rot by early detection and confirmation of the dissemination of pathogen-free rice seeds.

Investigation of Quorum Sensing-Dependent Gene Expression in Burkholderia gladioli BSR3 through RNA-seq Analyses

  • Kim, Sunyoung;Park, Jungwook;Choi, Okhee;Kim, Jinwoo;Seo, Young-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1609-1621
    • /
    • 2014
  • The plant pathogen Burkholderia gladioli, which has a broad host range that includes rice and onion, causes bacterial panicle blight and sheath rot. Based on the complete genome sequence of B. gladioli BSR3 isolated from infected rice sheaths, the genome of B. gladioli BSR3 contains the luxI/luxR family of genes. Members of this family encode N-acyl-homoserine lactone (AHL) quorum sensing (QS) signal synthase and the LuxR-family AHL signal receptor, which are similar to B. glumae BGR1. In B. glumae, QS has been shown to play pivotal roles in many bacterial behaviors. In this study, we compared the QS-dependent gene expression between B. gladioli BSR3 and a QS-defective B. gladioli BSR3 mutant in two different culture states (10 and 24 h after incubation, corresponding to an exponential phase and a stationary phase) using RNA sequencing (RNA-seq). RNA-seq analyses including gene ontology and pathway enrichment revealed that the B. gladioli BSR3 QS system regulates genes related to motility, toxin production, and oxalogenesis, which were previously reported in B. glumae. Moreover, the uncharacterized polyketide biosynthesis is activated by QS, which was not detected in B. glumae. Thus, we observed not only common QS-dependent genes between B. glumae BGR1 and B. gladioli BSR3, but also unique QS-dependent genes in B. gladioli BSR3.

Laboratory Culture Media-Dependent Biocontrol Ability of Burkholderia gladioli strain B543

  • Bae, Yeoung-Seuk;Park, Kyung-Seok;Choi, Ok-Hee
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.161-165
    • /
    • 2007
  • Cultivation of a biocontrol agent on a certain medium often results in reduced biocontrol efficacy and alters physiological state. In our previous study, Burkholderia gladioli strain B543 with long-term subculture on tryptic soy agar resulted in significantly reduced biocontrol ability against cucumber damping-off caused by P. ultimum. Therefore, we investigated the influence of laboratory culturing media on biocontrol activity and physiological state of Burkholderia gladioli strain B543 by using long-term repeated culture on a certain medium. When isolate B543 were successionally cultured on King's B agar (KBA), tryptic soy agar, nutrient agar (NA), or soil extract agar more than 20 times, the isolate cultured on KBA or NA showed a significantly enhanced biocontrol efficacy and higher population density in the rhizosphere of cucumber compared to that of the others. However, the isolates cultured on KBA more than 20 times showed the lowest production of protease, siderophore, or antifungal substance(s), measured by skim milk agar, Chrome-Azurol-S agar, and potato dextrose agar amended with 10% of the culture filtrate, respectively. Our results suggest that adaptation to proper culturing medium can alter biocontrol ability and physiological state, and we must consider laboratory media in optimizing the use of biocontrol agents.

Phytopathogenicity of Burkholderia gladioli pv. alliicola CH1 and Production of PGase Isozymes (Burkholderia gladioli pv. alliicola CH1의 병원성 및 Polygaractronase Isozymes 생성)

  • Lee, Chan-Jung;Lee, Jong-Tae;Kim, Yeong-Tae;Jhune, Chang-Sung;Cheong, Jong-Chun;Park, Wan
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.240-244
    • /
    • 2012
  • Burkholderia gladioli pv. alliicola CH1 showed typical soft rot symptoms at higher than $20^{\circ}C$ but very weak soft rot symptoms at temperature under $10^{\circ}C$. Among the nine agro-chemicals, oxolinic acid WP, streptomycin + copper hydroxide WP and streptomycin WP were found to be effective for the inhibition of the pathogen in vitro. The results of scanning electron microscopic investigation showed that onion bulbs was macerated by infection of B. gladioli pv. alliicola CH1. B. gladioli pv. alliicola CH1 was able to produce polygalacturonase but did not produce pectin lyase and carboxymethylcellulase. In analysis of the polygalacturonase activity of the isolated pectin-degradation enzymes from B. gladioli pv. alliicola CH1 total protein, three activity bands 45 kDa, 35 kDa, and 29 kDa were detected by the direct (or in-gel) activity staining on SDS-PAGE.

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.87.2-87
    • /
    • 2003
  • Long-term repeated culturing of biocontrol agents on a certain medium often results in reduced biocontrol efficacy and altered physiology. Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543 was investigated. Over 20 times repeated cultivation of B. giadioli strain B543 on Kings B medium or nutrient agar medium showed improved biological control of cucumber damping-off caused by Pythium ultimum, while one time cultivation on KB or NA did not. The repeated cultivation also induced the physiological changes of the biocontrol agent such as antifungal activity and the production of protease and siderophore. Our result indicates that adaptation to proper culturing medium can alter biocontrol ability and must consider in optimizing the use of biocontrol agents.

  • PDF

Isolation and Characterization of a Novel Bacterium Burkholderia gladioli Bsp-1 Producing Alkaline Lipase

  • Zhu, Jing;Liu, Yanjing;Yanqin, Yanqin;Pan, Lixia;Li, Yi;Liang, Ge;Wang, Qingyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1043-1052
    • /
    • 2019
  • Active lipase-producing bacterium Burkholderia gladioli Bps-1 was rapidly isolated using a modified trypan blue and tetracycline, ampicillin plate. The electro-phoretically pure enzyme was obtained by purification using ethanol precipitation, ion-exchange chromatography, and gel filtration chromatography. The molecular weight was 34.6 kDa and the specific activity was determined to be 443.9 U/mg. The purified lipase showed the highest activity after hydrolysis with $p-NPC_{16}$ at a pH of 8.5 and $50^{\circ}C$, and the $K_m$, $k_{cat}$, and $k_{cat}/K_m$ values were 1.05 mM, $292.95s^{-1}$ and $279s^{-1}mM^{-1}$, respectively. The lipase was highly stable at $7.5{\leq}pH{\leq}10.0$. $K^+$ and $Na^+$ exerted activation effects on the lipase which had favorable tolerance to short-chain alcohols with its residual enzyme activity being 110% after being maintained in 30% ethanol for 1 h. The results demonstrated that the lipase produced by the strain B. gladioli Bps-1 has high enzyme activity and is an alkaline lipase. The lipase has promising chemical properties for a range of applications in the food-processing and detergent industries, and has particularly high potential for use in the manufacture of biodiesel.

Mutant Induction of Several Antifungal Bacteria by Gamma Radiation (60Co) (감마선(60Co) 조사에 의한 항진균 세균의 돌연변이체 유도)

  • Chung, Hye-Young;Kim, Jae-Sung;Cho, Kyu Seong;Lee, Young-Bok;Lee, Young-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.216-222
    • /
    • 2002
  • In order to evaluate the antifungal activity of bacteria against plant pathogenic fungi, 8 bacteria were isolated from mushroom compost hot spring, seaweed, and forest soil and mutants from them were induced by $LD_{95}$ gamma radiation($^{60}Co$). Bacillus circulans K1, Burkholderia gladioli K4 and Bacillus subtilis YS1 showed wide antifungal spectrum against 12 kinds of plant pathogenic fungi. From the radiation sensitivity test, B. gladioli K4 was very sensitive to gamma radiation and its $D_{10}$ value was 0.11 kGy. Antifungal activities of B. circulans Kl-1004 and B. subtilis YS1-1009, which were induced by the radiation of $^{60}Co$ increased against Botryosphaeria dothidea. The mutant strains, B. subtilis YS1-1006 and B. subtilis YS1-1009 were resistant to tebuconazole and copper hydroxide. SAR535, SAR5108, and SAR5118 mutated from Streptomyces sp. SAR01 were antifungal activity deficient mutants against 5 kinds of plant pathogenic fungi compared to wild strain, so that they could be supposed to be model strains far studying antifungal mechanism. It is suggested that various functional types of mutants could be induced by gamma radiation and applied usefully.