Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2018.0136

Genomics-based Sensitive and Specific Novel Primers for Simultaneous Detection of Burkholderia glumae and Burkholderia gladioli in Rice Seeds  

Lee, Chaeyeong (Department of Microbiology, Pusan National University)
Lee, Hyun-Hee (Department of Microbiology, Pusan National University)
Mannaa, Mohamed (Department of Microbiology, Pusan National University)
Kim, Namgyu (Department of Microbiology, Pusan National University)
Park, Jungwook (Department of Microbiology, Pusan National University)
Kim, Juyun (Department of Microbiology, Pusan National University)
Seo, Young-Su (Department of Microbiology, Pusan National University)
Publication Information
The Plant Pathology Journal / v.34, no.6, 2018 , pp. 490-498 More about this Journal
Abstract
Panicle blight and seed rot disease caused mainly by Burkholderia glumae and Burkholderia gladioli is threatening rice cultivation worldwide. The bacteria have been reported as seed-borne pathogens from rice. Accurate detection of both pathogens on the seeds is very important for limiting the disease dissemination. Novel primer pairs targeting specific molecular markers were developed for the robust detection of B. glumae and B. gladioli. The designed primers were specific in detecting the target species with no apparent cross-reactions with other related Burkholderia species at the expected product size. Both primer pairs displayed a high degree of sensitivity for detection of B. glumae and B. gladioli separately in monoplex PCR or simultaneously in duplex PCR from both extracted gDNA and directly preheated bacterial cell suspensions. Limit of detection was as low as 0.1 ng of gDNA of both species and $3.86{\times}10^2cells$ for B. glumae and $5.85{\times}10^2cells$ for B. gladioli. On inoculated rice seeds, the designed primers could separately or simultaneously detect B. glumae and B. gladioli with a detection limit as low as $1.86{\times}10^3cells$ per rice seed for B. glumae and $1.04{\times}10^4cells$ per rice seed of B. gladioli. The novel primers maybe valuable as a more sensitive, specific, and robust tool for the efficient simultaneous detection of B. glumae and B. gladioli on rice seeds, which is important in combating rice panicle blight and seed rot by early detection and confirmation of the dissemination of pathogen-free rice seeds.
Keywords
Burkholderia gladioli; Burkholderia glumae; dual detection; PCR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Goto, K. and Ohata, K. 1956. New bacterial diseases of rice (brown stripe and grain rot). Ann. Phytopathol. Soc. Jpn. 21:46-47.
2 Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice?. Mol. Plant Pathol. 12:329-339.   DOI
3 Hikichi, Y., Okuno, T. and Furusawa, I. 1993. Immunofluorescent antibody technique for detecting Pseudomonas glumae on rice plants. Ann. Phytopathol. Soc. Jpn. 59:477-480.   DOI
4 Lee, C. J., Lee, J. T., Kwon, J. H., Kim, B. C. and Park, W. 2005. Occurrence of bacterial soft rot of onion plants caused by Burkholderia gladioli pv. alliicola in Korea. Aust. Plant Pathol. 34:287-292.   DOI
5 Lee, C. J., Yun, H. S., Jhune, C. S., Cheong, J. C. and Yoo, Y. B. 2010. Occurrence of bacterial soft rot of Pleurotus ostreatus caused by Burkholderia gladioli pv. agaricicola in Korea. J. Plant Pathol. 92:235-240.
6 Lee, K. Y., Kong, H. G., Choi, K. H., Lee, S. W. and Moon, B. J. 2011. Isolation and identification of Burkholderia pyrrocinia CH-67 to control tomato leaf mold and damping-off on crisphead lettuce and tomato. Plant Pathol. J. 27:59-67.   DOI
7 Maeda, Y., Shinohara, H., Kiba, A., Ohnishi, K., Furuya, N., Kawamura, Y., Ezaki, T., Vandamme, P., Tsushima, S. and Hikichi, Y. 2006. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int. J. Syst. Evol. Microbiol. 56:1031-1038.   DOI
8 Nandakumar, R., Bollich, P. A., Shahjahan, A. K. M., Groth, D. E. and Rush, M. C. 2008. Evidence for the soilborne nature of the rice sheath rot and panicle blight pathogen, Burkholderia gladioli 1. Can. J. Plant Pathol. 30:148-154.   DOI
9 Nandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E, Clark, C. A., Cartwright, R. D. and Rush, M. C. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 93:896-905.   DOI
10 Nzula, S., Vandamme, P. and Govan, J. R. 2000. Sensitivity of the Burkholderia cepacia complex and Pseudomonas aeruginosa to transducing bacteriophages. FEMS Immunol. Med. Microbiol. 28:307-312.   DOI
11 Kawaradani, M., Okada, K. and Kusakari, S. 2000. New selective medium for isolation of Burkholderia glumae from rice seeds. J. Gen. Plant Pathol. 66:234-237.   DOI
12 Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132:365-386.
13 Tsushima, S., Wakimoto, S. and Mogi, S. 1986. Selective medium for detecting Pseudomonas glumae Jurita et Tabei, the causal bacterium of grain rot of rice. Ann. Phytopathol. Soc. Jpn. 52:253-259.   DOI
14 Ura, H., Furuya, N., Iiyama, K., Hidaka, M., Tsuchiya, K. and Matsuyama, N. 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 72:98-103.   DOI
15 Vandamme, P., Mahenthiralingam, E., Holmes, B., Coenye, T., Hoste, B., De Vos, P., Henry, D. and Speert, D. P. 2000. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J. Clin. Microbiol. 38:1042-1047.
16 Salles, J. F., De Souza, F. A. and van Elsas, J. D. 2002. Molecular method to assess the diversity of Burkholderia species in environmental samples. Appl. Environ. Microbiol. 68:1595-1603.   DOI
17 Papaiakovou, M., Pilotte, N., Grant, J. R., Traub, R. J., Llewellyn, S., McCarthy, J. S., Krolewiecki, A. J., Cimino, R., Mejia, R. and Williams, S. A. 2017. A novel, species-specific, real-time PCR assay for the detection of the emerging zoonotic parasite Ancylostoma ceylanicum in human stool. PLoS Negl. Trop. Dis. 11:e0005734.   DOI
18 Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang, I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895.   DOI
19 Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L. E., Kim, J., Kim, I., Kang, Y., Yun, K., Choi, Y., Lee, H., Ji, S., Lee, K., Kim, B., Shon, J., Kim, W., Liu, K., Yoon, D., Kim, S., Seo, Y. and Lee, J. 2018. Cooperative interactions between seedborne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9:31.   DOI
20 Kawanishi, T., Shiraishi, T., Okano Y., Sugawara, K., Hashimoto, M., Maejima, K., Komatsu, K., Kakizawa, S., Yamaji, Y., Hamamoto, H., Oshima, K. and Namba, S. 2011. New detection systems of bacteria using highly selective media designed by SMART: Selective Medium-Design Algorithm Restricted by Two Constraints. PLoS One 6:e16512.   DOI
21 Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T. and Arakawa, M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36:1251-1275.   DOI
22 Yu, S., Chen, W., Wang, D., He, X., Zhu, X. and Shi, X. 2010. Species-specific PCR detection of the food-borne pathogen Vibrio parahaemolyticus using the irgB gene identified by comparative genomic analysis. FEMS Microbiol. Lett. 307:65-71.   DOI
23 Zaid, A. M., Bonasera, J. M. and Beer, S. V. 2012. OEM-A new medium for rapid isolation of onion-pathogenic and onionassociated bacteria. J. Microbiol. Methods 91:520-526.   DOI
24 Zhang, H., Hanada, S., Shigematsu, T., Shibuya, K., Kamagata, Y., Kanagawa, T. and Kurane, R. 2000. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50:743-749.   DOI
25 Awika, J. M. 2011. Major cereal grains production and use around the world. In: Advances in cereal science: Implications to food processing and health promotion, eds. by J. M. Awika, V. Piironen and S. Bean, pp. 1-13. American Chemical Society, Washington, D. C., USA.
26 Stanier, R. Y., Palleroni, N. J. and Doudoroff, M. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159-271.   DOI
27 Seo, Y. S., Lim, J., Choi, B. S., Kim, H., Goo, E., Lee, B., Lim, J. S., Choi, I. Y., Moon, J. S., Kim, J. and Hwang, I. 2011. Complete genome sequence of Burkholderia gladioli BSR3. J. Bacteriol. 193:3149.   DOI
28 Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., Van Elsas, J. D., Faure, D., Reiter, B., Glick, B. R., Wang-Pruski, G. and Nowak, J. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plantbeneficial properties. Int. J. Syst. Evol. Microbiol. 55:1187-1192.   DOI
29 Baek, I., Seo, B., Lee, I., Lee, K., Park, S. C., Yi, H. and Chun, J. 2015. Burkholderia megalochromosomata sp. nov., isolated from grassland soil. Int. J. Syst. Evol. Microbiol. 65:959-964.   DOI
30 Stackebrandt, E. and Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849.   DOI
31 Takeuchi, T., Sawada, H., Suzuki, F. and Matsuda, I. 1997. Specific detection of Burkholderia plantarii and B. glumae. Jpn. J. Phytopathol. 63:455-462.   DOI
32 Tao, T., Chen, Q., Bie, X., Lu, F. and Lu, Z. 2015. Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach. World J. Microbiol. Biotechnol. 31:1955-1966.   DOI
33 Trung, H. M., Van, N. V., Vien, N. V., Lam, D. T. and Lien, M. 1993. Occurrence of rice grain rot disease in Vietnam. Int. Rice Res. Notes 18:30.
34 Cottyn, B., Regalado, E., Lanoot, B., De Cleene, M., Mew, T. W. and Swings, J. 2001. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91:282-292.   DOI
35 Baek, K. Y., Lee, H. H., Son, G. J., Lee, P. A., Roy, N., Seo, Y. S. and Lee, S. W. 2018. Specific and sensitive primers developed by comparative genomics to detect bacterial pathogens in grains. Plant Pathol. J. 34:104-112.
36 Cho, H. S., Park, S. Y., Ryu, C. M., Kim, J. F., Kim, J. G. and Park, S. H. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60:14-23.   DOI
37 Cottyn, B., Van Outryve, M. F., Cerez, M. T., De Cleene, M., Swings, J. and Mew, T. W. 1996. Bacterial disease of rice. II. Characterization of pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis. 80:438-445.   DOI
38 Cottyn, B., Debode, J., Regalado, E., Mew, T. W. and Swings, J. 2009. Phenotypic and genetic diversity of rice seed-associated bacteria and their role in pathogenicity and biological control. J. Appl. Microbiol. 107:885-897.   DOI
39 FAO. Feeding the world, eradicating hunger: executive summary. World summit on food security 2009. FAO Database. Version: 2009. URL http://www.fao.org/fileadmin/templates/wsfs/Summit/WSFS_Issues_papers/WSFS_Background_paper_Feeding_the_world.pdf [20 July 2018].
40 Cui, Z., Ojaghian, M. R., Tao, Z., Kakar, K. U., Zeng, J., Zhao, W., Duan, Y., Vera Cruz, C. M., Li, B., Zhu, B. and Xie, G. 2016. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice. J. Appl. Microbiol. 120:1357-1367.   DOI
41 Furuya, N., Ura, H., Iiyama, K., Matsumoto, M., Takeshita, M. and Takanami, Y. 2002. Specific oligonucleotide primers based on sequences of the 16S-23S rDNA spacer region for the detection of Burkholderia gladioli by PCR. J. Gen. Plant Pathol. 68:220-224.   DOI