• Title/Summary/Keyword: Burkholderia

Search Result 263, Processing Time 0.026 seconds

An Enantioselective Amidase from Burkholderia multivorans for the Stereoselective Synthesis of Esfenvalerate

  • Lee, Sang-Hyun;Park, Oh-Jin;Shin, Hyun-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.936-942
    • /
    • 2014
  • Using racemic (R,S)-2-(4-chlorophenyl)-3-methylbutyramide, an intermediate for the chiral pyrethroid insecticide Esfenvalerate, as a sole nitrogen source in a minimal medium, several strains with high enatioselectivity (${\geq}98%$) were isolated by enrichment techniques. One of the strains, LG 31-3, was identified as Burkholderia multivorans, based on physiological and morphological tests by a standardized Biolog station for carbon source utilization. A novel amidase was purified from B. mutivorans LG 31-3 and characterized. The enzyme exhibited (S)-selective amidase activity on racemic (R,S)-2-(4-chlorophenyl)-3-methylbutyramide. Addition of the racemic amide induced the production of the enantioselective amidase. The molecular mass of the amidase on SDS-PAGE analysis was shown to be 50 kDa. The purified amidase was subjected to proteolytic digestion with a modified trypsin. The N-terminal and internal amino acid sequences of the purified amidase showed a high sequence homology with those deduced from a gene named YP_366732.1 encoding indole acetimide hydrolase from Burkholderia sp. 383.

Burkholderia cepacia Complex Infection in a Cohort of Italian Patients with Cystic Fibrosis

  • Lambiase, Antonietta;Raia, Valeria;Stefani, Stefania;Sepe, Angela;Ferri, Pasqualina;Buonpensiero, Paolo;Rossano, Fabio;Pezzo, Mariassunta Del
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.275-279
    • /
    • 2007
  • The aims of this study were to detect Burkholderia cepacia complex (Bcc) strains in a cohort of Cystic Fibrosis patients (n=276) and to characterize Bcc isolates by molecular techniques. The results showed that 11.23% of patients were infected by Bcc. Burkholderia cenocepacia lineage III-A was the most prevalent species (64.3%) and, of these, 10% was cblA positive and 50% esmR positive. Less than half of the strains were sensitive to ceftazidime, meropenem, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole. About half of the strains (41%) had homogeneous profiles, suggesting cross-transmission. The infection by B. cenocepacia was associated to a high rate of mortality (p=0.01).

Computational Identification and Comparative Analysis of Secreted and Transmembrane Proteins in Six Burkholderia Species

  • Nguyen, Thao Thi;Lee, Hyun-Hee;Park, Jungwook;Park, Inmyoung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.148-162
    • /
    • 2017
  • As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens (B. glumae BGR1, B. gladioli BSR3), human pathogens (B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes (Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, humanpathogenic, and endophytic bacteria.

Production of Stress Shock Proteins DnaK and GroEL in Burkholderia cepacia YK-2 by Phenoxyherbicide 2,4-Dichlorophenoxyacetic Acid as an Environmental Contaminant (Burkholderia cepacia YK-2에서 페녹시계 제초제 2,4-Dichlorophenoxyacetic Acid에 의한 스트레스 충격 단백질 DnaK와 GroEL의 생성)

  • Cho, Yun-Seok;Park, Sang-Ho;Kim, Chy-Kyung;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Production of stress shock proteins in Burkholderia cepacia YK-2 in response to the phenoxyherbicide 2,4-dichlorophenoxyacetic acid(2,4-D) as an environmental contaminant was investrigated. The stress schock proteins were synthesized at different 2,4-D concentrations in exponentially growing cultures of B. capacia YK-2. This response involved the production of 43kDa and 41kDa GroEL proteins. The proteins were characterized by SDS-PAGE and Western blot using the anti-DnaK nad anti-GroEL monoclonal antibodies. Total stress shock proteins were analyzed by 2-D PAGE. Survival of B. cepacia YK-2 with time in the presence of different concentrations of 2,4-D was monitored, and viable counts paralleled the production of the stress shock proteins in this bacterium.

  • PDF

Characteristics and Antimicrobial Effects of Novel Burkholderia cepacia No. 15-2 Isolated from Compost (퇴비로부터 분리된 Burkholderia cepacia No.15-2의 특성과 항균 효과)

  • Yun, Soon-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.421-428
    • /
    • 2003
  • To develop the functional-compost containing antifungal substance by using antagonistic microorganisms, Spinacia oleracea L and Rhizoctonia solani Kuhn O-28 were used as a model plant and phytopathogen, respectively. Total 80 strains were isolated from the compost of various waste foods mixture processed for a year. Among them, No.15-2 strain was selected due to its highest antifungal activity against R. solani Kuhn O-28 and was identified phyno- and phylogenotypically as Burkholderia cepacia genomovar V. which is rare probability in pathogen, by 16S rDNA sequencing and specific primer pair PCR method. B. cepacia No.15-2 preferentially dominated during the compost and its cell numbers were maintained almost $${\times}$10^{13}$ cuf/g for 15 days. The morbidity caused by R. solani Kuhn O-28 in S. oleracea L cultivation was reduced to 40% by addition of B. cepacia No.15-2. In conclusion, the antifungal compost using B. cepacia No.15-2 could be applied to biocontrol of various crops blights caused by fungal pathogen.

Degradation of 3-Methyl-4-nitrophenol, a Main Product of the Insecticide Fenitrothion, by Burkholderia sp. SH-1 Isolated from Earthworm (Eisenia fetida) Intestine

  • Kim, Seon-Hwa;Park, Myung-Ryeol;Han, Song-Ih;Whang, Kyung-Sook;Shim, Jae-Han;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.281-287
    • /
    • 2007
  • Microorganisms were isolated from earthworm intestine and examined for their ability to degrade 3-methyl-4-nitrophenol (MNP), a main degradation product of the insecticide fenitrothion. An isolate that showed the best degradation of MNP was selected for further study. The 16S rRNA analysis showed that the isolate belongs to the genus of Burkholderia, close to phenanthrene-degrading Burkholderia sp. S4.9, and is named Burkholderia sp. SH-1. When time-course degradation of MNP by SH-1 was examined by high performance liquid chromatographic analysis, almost complete degradation of MNP was observed within 26 h. Colony forming unit value assays indicated that the isolate SH-1 was capable of utilizing MNP as a sole carbon source. SH-1 could also degrade p-nitrophenol (PNP) but could not degrade ortho-substituted nitroaromatics such as 2,4-, 2,6- and 2,5-dinitrophenol. Catechol was detected as the main degration product of MNP and PNP. SH-1 was also found in the soil from which earthworms were obtained. These results suggest that the dispersal of Burkholderia sp. SH-1 into different environment with the aid of earthworms is likely to play a role in bioremediation of the soil contaminated with MNP.

Selection of Antifungal Bacteria Burkholderia lata CAB13001 for Control on Red Pepper Anthracnose and Its Control Efficacy in Field (고추 탄저병 방제제 Burkholderia lata CAB13001 선발 및 포장방제 효과)

  • Hahm, Soo-Sang;Kim, Byung-Ryun;Kwon, Mi-Kyung;Han, Kwang-Seop;Park, In-Hee;Seo, Kyung-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.649-660
    • /
    • 2018
  • To control the pepper anthracnose caused by Colletotrichum acutatum, antifungal bacterium strains which was selected among bacterium from natural soil, was tested the antimicrobial activity against various pathogens and its control efficacy on anthracnose disease in the fields. We confirmed that antagonistic activity of CAB13001 strain to pathogens such as Sclerotinia cepivorum, Sclerotinia sclerotium and Botrytis cinerea including Colletotrichum acutatum was remarkable superior with the dual culture method in the artificial medium. In vitro bioassay using the green pepper fruit, CAB13001 strain suppressed the lesion development of Anthracnose disease, and its control value compared to the untreated one was 82.4% on pepper fruit in field test. These results suggested that CAB13001 strain could be a very useful biological control agents to anthracnose disease caused by air born plant pathogens of pepper. By the way, analysis of nucleotide sequence of the gene 16S rDNA, antagonistic bacterium CAB13001 strain used in this study was identified as Burkholderia lata.

Isolation and Identification of a Marine Bacterium Producing an Immunostimulant (면역증강물질을 생산하는 해양미생물의 분리 및 동정)

  • 최혜정;정명주;정영기
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1145-1150
    • /
    • 2000
  • 면역증강물질을 생산하는 균주를 해수로부터 분리하여 동정한 결과 크림색의 둥근 점질성의 집략을 나타내었으며, Gram 음성의 간산형이고, 미약한 운동성을 가지며 catalase 양성과 oxidase 음성 반응을 보였다. 균주를 6시간 , 20시간, 72시간, 및 144시간 뱅양하여 전자 현미경사에서 관찰한 결과 20시간 배양한 영양세포는 1.25~0.6$\times$0.6$\mu\textrm{m}$ 크기의 간균 형태를 갖추었으며 시간이 흐를수록 세포내 관립의 밀도가 증가하면서 세포형태가 다형태성으로 변하였다. 세포내 과립의 존재를 확인하기 위해 sudan black B로 염색한 결과 양성으로 polyhy-droxy butyrate로 예상되었다. 생육을 위한 최적 온도는 3$0^{\circ}C$, pH는 3.0~10.0이었으며, 호기성균이었다. D-Glu-cose, D-mannose, D-mannitiol. insitol, maltose 등의 당과 L-asparagine, L-glutamate 등의 아미노산을 이용하였고 특시, O/F test에서 glucose와 maltose를 산화 하였다. 이상과 같은 결과로 해양세균 유래인 Pseudo-mallei group의 Burkholderia 속으로 확인되었음로 본 균주를 Burkholderia sp. IS-203으로 명명하였다.

  • PDF

Occurrence of Burkholderia glumae on Rice and Field Crops in Korea

  • Kim, Jin-Woo;Kang, Yong-Sung;Kim, Jung-Gun;Choi, Ok-Hee;Hwang, In-Gyu
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.271-272
    • /
    • 2010
  • Burkholderia glumae causes bacterial rice grain rot and bacterial wilt on many field crops. We developed a simple diagnostic streak method for the isolation of B. glumae from diseased plant material. The geographical distribution of 178 Korean isolates shows that B. glumae is widely spread in South Korea.

Synergistic Antimicrobial Action of Thymol and Sodium Bisulfate against Burkholderia cepacia and Xanthomonas maltophilia Isolated from the Space Shuttle Water System

  • Kim, Du-Woon;Day, Donal F.
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.321-323
    • /
    • 2006
  • A combination of thymol and sodium bisulfate was found to be an effective biocidal agent against strains of Burkholderia cepacia and of Xanthomonas maltophilia that were found in the space shuttle water system. Potassium iodide (KI), the biocidal agent used in the past, had a minimum inhibitory concentration (MIC) of 50,000 ppm against the two B. cepacia (541 STS-81 and 1119 STS-91) strains, whereas that of thymol and sodium bisulfate was 2,400 and 950 ppm, which was 21 and 53 times lower than that of KI for B. cepacia, respectively. The MIC value for the combination of thymol and sodium bisulfate was 4 times lower than that for thymol or sodium bisulfate alone against B. cepacia (541 STS-81, 1119 STS-91) or Pseudomonas cepacia (ATCC 31941). The fractional inhibitory concentration (FIC) of the combination of thymol and sodium bisulfate for all organisms tested was less than 0.5, indicating a strong synergistic effect.