• Title/Summary/Keyword: Buried pipelines

Search Result 187, Processing Time 0.023 seconds

Source Estimation of Digital Filter System using Inverse Problem (역문제: 2차원 전자파 산란문제)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.47-48
    • /
    • 2014
  • Non-destructive technique to measure internal structure and constant distribution of material can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, inverse scattering solution based on 2-dimensional EM scattering problem should be considered and formulated.

  • PDF

Estimation of Far-field Radiation by 2-Dimensional EM Scattering (2차원 전자파 산란에 따른 방사패턴의 추정)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.51-52
    • /
    • 2014
  • Non-destructive technique to measure internal structure and constant distribution of material can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, we considered 2-dimensional EM scattering problem. Radiation pattern in far field is estimated by using some measured information obtained from near-field solutions.

  • PDF

Source Estimation in Near-field by 2-Dimensional EM Scattering (2차원 전자파 산란에 따른 근방계에서의 소스 추정)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.59-60
    • /
    • 2014
  • Non-destructive technique to measure internal structure and constant distribution of material can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, we considered 2-dimensional EM scattering problem. Incident wave source is estimated by using some measured information obtained from near-field solutions.

  • PDF

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

Development of Vibration Prediction Program of Gas Pipeline by Construction Vibration (건설진동에 의한 가스배관의 진동예측 프로그램 개발)

  • Jeong S. Y.;Hong S. K.;Kim J. H.;Koh J. P.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.30-35
    • /
    • 2001
  • Presently, working gas pipelines are being subjected to the influence of construction vibration. Especially on subway and road construction, gas pipelines are being influenced to construction vibration caused by use of construction equipment, passage of a large-sized vehicle and blasting. Buried gas pipelines are subjected to the influence of vibration caused by blast in the vicinity of pipeline, exposed gas pipelines are subjected to the influence of vehicle vibration. Therefore, in the study, it is developed to vibration prediction program of gas pipeline by analyzing measured construction vibration. This program is able to predict vibration of gas pipeline according to field conditions by using the results of structural finite element analysis and empirical equation by reliability analysis. And, this program contains the database of construction vibration. Additionally, this program is able to compute estimated blast vibration equation using measured blast vibration data in the field and to form graph of allowable charging gunpowder per delayed-action with the change of blast velocity. Therefore, field workers are able to predict construction vibration around gas pipeline and estimate safety of gas pipeline.

  • PDF

A Study on the Development of the Repair Standards for Underground Pipelines Carrying Natural Gas (도시가스 매설배관 보수기준 개발에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.33-43
    • /
    • 2016
  • Grinding, weld deposition, type A sleeve, type B sleeve, composite sleeve, hot tapping and clamp are used as the method to repair the buried pipelines in the United States, UK and Europe. In the event of defect to the pipeline, they have repaired the pipeline through the fitness-for-service assessments. In addition, they have guidelines for the possible repair methods to apply to each type of damage, which is occurred due to the 3rd party construction or corrosion. According to the KGS FS551, Safety Validation in Detail including ECDA(External Corrosion Direct Assessment) as one method of integrity management should be carried out for the old pipeline which supply natural gas as the middle pressure in Korea. Where a defect on the pipelines is found, on the result of Safety Validation in Detail, the pipelines should be repaired or replaced by new piping. However, there are no guidelines or regulations regarding the repair and reinforcement of pipeline, so that, cutting the damaged pipeline and replacing it as a segment of new pipe is the only way in Korea until now. We have suggested pipeline repair methods including type A, B sleeve, composite sleeve, after the survey of foreign repair method and standards including the method of United States and the United Kingdom, and after analysis of the results on pipeline repair test including type A, type B sleeve and composite sleeve.

Comparison of Machine Learning Models to Predict the Occurrence of Ground Subsidence According to the Characteristics of Sewer (하수관로 특성에 따른 지반함몰 발생 예측을 위한 기계학습 모델 비교)

  • Lee, Sungyeol;Kim, Jinyoung;Kang, Jaemo;Baek, Wonjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.5-10
    • /
    • 2022
  • Recently, ground subsidence has been continuously occurring in downtown areas, threatening the safety of citizens. Various underground facilities such as water and sewage pipelines and communication pipelines are buried under the road. It is reported that the cause of ground subsidence is the deterioration of various facilities and the reckless development of the underground. In particular, it is known that the biggest cause of ground subsidence is the aging of sewage pipelines. As an existing study related to this, several representative factors of sewage pipelines were selected and a study to predict the risk of ground subsidence through statistical analysis has been conducted. In this study, a data SET was constructed using the characteristics of OO city's sewage pipe characteristics and ground subsidence data, The data set constructed from the characteristics of the sewage pipe of OO city and the location of the ground subsidence was used. The goal of this study was to present a classification model for the occurrence of ground subsidence according to the characteristics of sewage pipes through machine learning. In addition, the importance of each sewage pipe characteristic affecting the ground subsidence was calculated.

A Study on the Development of Long-term Self Powered Underground Pipeline Remote Monitoring System (자가 발전형 장기 지하매설배관 원격감시 장치 개발에 관한 연구)

  • Kim, Youngsear;Chae, Hyun-Byung;Seo, Jae-Soon;Chae, Soo-Kwon
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.576-585
    • /
    • 2018
  • Systematic management during the whole life cycle from construction to operation and maintenance is very important for the seven underground pipelines (waterworks, sewerage, electricity, telecommunications, gas, heating, oil including waterworks and sewerage). Especially, it is the construction process that affects the whole life cycle of underground buried pipeline. In order to construct a new city or to maintain different underground pipes, it is always necessary to dig the ground and carry out construction and related work. There is a possibility that secondary and tertiary breaks frequently occur in the pipeline construction process after the piping constructed first in this process. To solve this problem, a system is needed which can monitor damage in real time. However, the supply of electric power for continuous operation of the system is limited according to the environment of underground buried pipelines, so it is necessary to develop a stable electric power supply system using natural energy rather than existing electric power. In this study, we developed a system that can operate the pipeline monitoring system for long time (24 hours and 15 days) using natural energy using wind and solar light.

Study on real time monitoring to detect third party damage using vibration signal (진동신호를 이용한 타공사 조기 감시 기술 연구( I ))

  • Cho S.H.;Jeon K.S.;Park K.W.;Cho Y.B.;Li S.Y.;Kyo Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.1-8
    • /
    • 2000
  • Third party damage is one of the causes intrimiting the safety of a buried pipelines and it is very important to detect third party damage on pipelines as soon as possible. The purpose of this study is whether third-party damage can be detected by accelerometer sensor and how far the third-party damage signal can propagate. And a pilot experiment was carried out in order to find third-party damage location. As a result, the detected signal's spectum is high frequency at short distances, as the distance is far, the signals in high frequency range are attenuated and those in low frequency range remain. It was also proved that third-party damage within 5.3km distance can be detected by monitoring vibration signals.

  • PDF

A Study on the Improvement of the Standards of Backfill Materials for Underground Pipelines Carrying Natural Gas (도시가스 배관용 되메움재 기준 개선에 관한 연구)

  • Ryou, Young-Don;Kwak, Che-Sik;Ryu, Young-Jo;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • According to the Integrated Notice on City Gas Safety Management Standards, materials for bedding and foundation which are around the pipe should be sands or fine grade soil without large particle that is more than 19 mm size. However, sands are mostly used at gas pipeline construction sites and this causes a shortage of sands and an increase of construction costs. It even causes the disruption of natural environment. In order to improve the standards of backfill material, we have researched regulations in other countries and investigated the pipeline construction sites to survey the present state of backfilling. We also have studied what the bedding and foundation materials affect on buried gas pipelines. Lastly, we have suggested suitable materials for bedding and foundation besides sands. We are sure this paper help the government amend the Notice about backfill materials.

  • PDF