• Title/Summary/Keyword: Buried pipeline

Search Result 218, Processing Time 0.023 seconds

Earthquake Fragility Analysis of a Buried Gas Pipeline (매설가스배관의 지진 취약도 해석)

  • Lee, Do-Hyung;Jeon, Jeong-Moon;Oh, Jang-Kyun;Lee, Du-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.65-76
    • /
    • 2010
  • In this paper, earthquake fragility analysis has been comparatively performed with regard to a buried gas pipeline of API X65 which has been widely used in Korea. For this purpose, a nonlinear time-history analyses has been carried out for 15 different analytical models of a buried gas pipeline in terms of the selected 12 sets of earthquake ground motions with 0.1g of scaling interval. Following that, earthquake fragility analyses have been conducted using the maximum axial strain of the pipeline obtained from the nonlinear time-history analyses. Parameters under consideration for subsequent earthquake fragility analyses are soil conditions, end-restraint conditions, burial depth and the type of pipeline. Comparative analyses reveal that whereas the first three parameters influence the fragility curves, particularly soil conditions amongst the three parameters, the last parameter has a little effect on the curves. In all, the present study can be considered as a benchmark fragility analysis of a buried gas pipeline in the absence of an earthquake fragility analysis of the pipeline and thus is expected to be a useful source regarding earthquake fragility analyses of a buried gas pipelines.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth (해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성)

  • Shin, Mun-Beom;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

Numerical Analysis of Flow and Bed Changes for Selecting Optimized Section of Buried Water Pipeline Crossing the River (하천을 횡단하는 도수관로의 최적 매설구간 선정을 위한 흐름 및 하상변동 수치모의)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1756-1763
    • /
    • 2014
  • A water pipeline buried under the riverbed could be exposed by bed erosion, therefore safe crossing sections should be analyzed for preventing damages due to the exposure of pipelines. In this study, flow and bed changes have been simulated using a two-dimensional numerical model for selecting the optimized section of pipeline crossing in the Geum River. As a result of simulation with the 20-year recurrence flood, sediment deposition has been distributed overall in the channel and bed erosion over 2 m has occurred near bridge piers. For the extreme flood simulation, the channel bed near the bridge piers has been eroded down to the buried depth. Therefore, within 140 m upstream of the bridge piers, bed erosion affects a buried pipeline in safety due to bridge pier effects and the crossing section over 150 m upstream of bridge piers is selected as a safe zone of a water pipeline.

Effect of Ground Subsidence on Reliability of Buried Pipelines (지반침하가 매설배관의 건전성에 미치는 영향)

  • 이억섭;김동혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-180
    • /
    • 2004
  • This paper presents the effect of varying boundary conditions such as ground subsidence, internal pressure and temperature variation for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function incorporating with von-Mises failure criteria is used in order to estimate the probability of failure mainly associated with three cases of ground subsidence. Using stresses on the buried pipelines, we estimate the probability of pipelines with von-Mises failure criterion. The effects of varying random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the pipeline crossing ground subsidence regions which have different soil properties.

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline (II) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (II))

  • Bang I.W.;Kim H.S.;Yang Y.C.;Kim W.S.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 1998
  • The thickness of buried gas pipeline is determined mainly with internal pressure and location factor according to the requirements of ANSI B3l.8. But the stress of buried gas pipeline is determined by not only internal stress but also external loads. The change of burying and environmental conditions, therefore, may result in increasing stress of pipeline. In order to avoid the decrease of safety degree resulting from change of environmental condition, the evaluation of stress level shall be necessary. The reliable equations have been developed for calculating stress of buried pipeline from internal pressure, earth load, vehicle load, ground subsidence. But they are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The program can calculate maximum stress resulted from earth load, vehicle load, thermal load, four type ground subsidence. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. In this paper, as the series of paper I, the operating method and the functions of the program is explained.

  • PDF

Vibration Velocity Response of Buried Gas Pipelines according to Train Speed (지중 매설 가스 배관의 열차 주행 속도에 따른 진동 속도 특성)

  • Kim, Mi-Seung;Sun, Jin-Sun;Kim, Gun;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-566
    • /
    • 2008
  • Recently, because of development of the high speed train technology, the vibration loads by train is significantly increased ever than before. This buried gas pipelines are exposed to both repeated impact loads, and, moreover, they have been influencing by vibration loads than pipeline which is not located under vehicle loads. The vibration characteristic of pipeline is examined by dynamic analysis, and variable is only train speed. Since an effect of magnitude of vibration loads is more critical than cover depth, as increasing the train speed, the vibration speed of buried pipelines is also increased. The slope of vibration velocity is changed by attenuation of wave, at train speed, 300 km/h. From the analysis results, the vibration velocity of pipelines is satisfied with the vibration velocity criteria which are established by Korea Gas Corporation. The results present operation condition of pipelines under rail loads has fully sound integrity based on KOGAS specification.

  • PDF

Analysis of Stresses on Buried Natural Gas Pipeline Subjected to Ground Subsidence (매설 천연가스배관의 지반침하에 의한 응력 분석)

  • 김형식;김우식;방인완;오규환;홍성호
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.54-64
    • /
    • 1998
  • This study was initiated to examine the stress and deformation characteristics of the pipelines which were subjected to various environmental conditions in order to confirm their integrity. As the part of them, this paper presents the analysis results for the effect of ground subsidence combined with main loads on buried natural gas pipelines. The ground subsidence which can occur for buried gas pipeline has been classified to the three cases. Finite element method was used to analyze the effect of ground subsidences on pipeline of 26 inch(0.660 m) and 30 inch(0.762 m) diameter used as high pressure ($70 kg_f/cm^2(6.86 MPa)$) main pipelines of KOGAS. This paper shows the result of stress analysis for the pipelines subjected to those three case ground subsidence. Comparing these results with safety criterion of KOGAS(0.9 $\sigma_y$), maximum allowable settlement and loads have been calculated.

  • PDF

Effect on Coefficient of Subgrade Reaction on Dynamic responses of Buried Pipelines (지중매설관로의 동적응답에 미치는 지반반력계수의 영향)

  • Jeong, Jin-Ho;Lee, Kwang-Yeol;Kang, Hyo-Sub
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We have examined the effect of values of subgrade reaction coefficient on the dynamic responses(displacement and strain responses) of the buried concrete pipeline of which the end boundary condition is the fixed ends. We have carried out the dynamic analysis of mode superposition method with representative values of coefficient of subgrade reaction applicable to the classified rock masses. We have found that the effect of subgrade reaction coefficient on the dynamic responses of the pipeline appears noticeable for the seismic waves having relatively high frequency and low apparent propagation velocity.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I) (단부 경계조건을 고려한 매설관의 동적응답 해석 (I))

  • Jeong, Jin-Ho;Lee, Byong-Gil;Park, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF