• 제목/요약/키워드: Buoyant convection

검색결과 11건 처리시간 0.018초

방위각방향 온도변화를 가지는 실린더 내의 부력 유동 (Buoyant Convection in a Cylinder with Azimuthally-varying Sidewall Temperature)

  • 정광효;현재민;송태호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.45-50
    • /
    • 2000
  • A numerical investigation is made of three-dimensional buoyant convection of a Boussinesq-fluid in a vertical cylinder. The top and bottom endwalls are thermally insulated. Flow is driven by the substantial azimuthal variations in thermal boundary conditions. Comprehensive numerical solutions to the Navier-Stokes equations are obtained. The representative Rayleigh number is large, thus, the overall flow pattern is of boundary layer-type. Three-dimensional (low characteristics are described. Specially, the global flow and the heat transfer features are delineated when the severity of azimuthal variation of sidewall temperature n, is intensified. Temperature and velocity fields on the meridional planes and the planes of constant height are presented. The global flow weakens as n becomes large. The pattern of the local Nusselt number on the surface of cylinder is similar regardless of n. The convective gain in heat transfer activities is reduced as n increases.

  • PDF

부력에 의한 난류 열대류의 혼성 난류모델 (A Hybrid Turbulence Model for Prediction of Buoyancy-Driven Turbulent Thermal Convection Flow)

  • 김태규;성형진
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2069-2078
    • /
    • 1993
  • The buoyancy-driven turbulent thermal convection is predicted using an anisotropic hybrid turbulence model, which is incorporated with a low Reynolds k-.epsilon. turbulence model and an anisotropic buoyant part of algebraic stress model(ASM). The numerical predictions are compared with the Davidson's model,(1) the full ASM and the experimental results of Cheesewright et al.(2) All the models are shown to predict good agreements with the experiments for the averaged turbulence quantities. It is found that the effect of an anisotropic part on the Reynolds stress and the turbulent heat fluxes is substantial. In this study, the present hybrid model gives a fairly reasonable prediction in terms of the computational accuracy, convergence and stability. The contribution of an anisotropic buoyant part to turbulent heat fluxes are also scrutinized over the range of Rayleigh numbers $(4.79{\times}10^{10}{\le}Ra{\le}7.46{\times}10^{10}).$

Numerical simulation of natural convection around the dome in the passive containment air-cooling system

  • Chunhui Dong;Shikang Chen;Ronghua Chen;Wenxi Tian;Suizheng Qiu;G.H. Su
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2997-3009
    • /
    • 2023
  • The Passive containment Air-cooling System (PAS) can effectively remove the decay heat of the modular small nuclear reactor after an accident. The details of natural convection around the dome, which is a key part of PAS, were investigated numerically in the present study. The thermal dynamics around the dome were studied through the temperature, pressure and velocity contours and the streamlines. Additionally, the formation of the buoyant plume at the top of the dome was investigated. The results show that with the increase of Ra, the lift-off point moves toward the bottom of the dome, and the eddy under the buoyant plume grows larger gradually, which enhances the heat transfer. And the heat transfer along the dome surface with different truncation angles was investigated. As the angle increases, the heat transfer coefficient becomes stronger as well. Consequently, a newly developed heat transfer correlation considering the influence of truncation angle for the dome is proposed based on the simulated results. This study could provide a better understanding of natural convection around the dome of PAS and the proposed correlation could also offer more predictive value in the improvement of nuclear safety.

사각 밀폐용기 내부의 밀도최대치를 가지는 유체의 공진현상 (Oscillatory enclosed buoyant convection of a fluid with the density maximum)

  • 이창호;현재민;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.311-315
    • /
    • 2000
  • A numerical investigation is made of time-dependent buoyant convection in a square of a non-Boussinesq fluid. The density-temperature$({\rho}-T)$ relation is modeled by a quadratic function, with the maximum density ${\rho}_M$ at temperature $T_M$. The horizontal walls of the square are insulated, and a pulsating temperature $T_H=T_M+{\Delta}T'\;sin({\omega}{\tau})$ is imposed on the hot vertical sidewall. The temperature at the cold wall $T_c$ is constant. Extensive numerical solutions to the governing Navier-Stokes equations are portrayed. Resonance is identified by monitoring the amplitude of the mid-plane Nusselt number, $A(Nu^*)$. The primary resonance frequency is found by matching ${\omega}$ to the nondimensional basic mode $N_1$ of internal gravity oscillations. Due to the quadratic$({\rho}-T)$ relationship, the effective pulsation frequency for density, $2{\omega}$, is meaningful, which brings forth the secondary resonance frequency, i.e., $2{\omega}=N_1$

  • PDF

간헐 열전달을 이용한 밀폐용기내의 물질전달 향상 (Enhancement of Mass Transfer of an Enclosed Fluid by Time-periodic Thermal Forcing)

  • 곽호상
    • 한국전산유체공학회지
    • /
    • 제7권1호
    • /
    • pp.36-43
    • /
    • 2002
  • A numerical investigation is made of unsteady double-diffusive convection of a Boussinesq fluid in a rectangular cavity subject to time-periodic thermal excitations. The fluid is initially stratified between the top endwall of low solute concentration and the bottom endwall of high solute concentration. A time-dependent heat flux varying in a square wave fashion, is applied on one sidewall to induce buoyant convection. The influences of the imposed periodicity on double-diffusive convection are examined. A special concern is on the occurrence of resonance that the fluctuations of flow and attendant heat and mass transfers are mostly amplified at certain eigenmodes of the fluid system. Numerical solutions illustrate that resonant convection results in a conspicuous enhancement of time-mean mass transfer rate.

주기적인 측벽가열에 반응하는 사각공동내의 이중확산 대류 (Double-Diffusive Convection in a Rectangular Cavity Responding to Time-Periodic Sidewall Heating)

  • 곽호상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.112-117
    • /
    • 2001
  • A numerical investigation is made of unsteady double-diffusive convection of a Boussinesq fluid in a rectangular cavity subject to time-periodic thermal excitations. The fluid is initially stratified between the top endwall of low solute concentration and the bottom endwall of high solute concentration. A time-dependent heat flux varying in a square wave fashion, is applied on one sidewall to induce buoyant convection. The influences of the imposed periodicity on double-diffusive convection are scrutinized. A special concern is on the occurrence of resonance that the fluctuations of flow and attendant heat and mass transfers are mostly amplified at certain eigenmodes of the fluid system. Numerical solutions are analyzed to illustrate the characteristic features of resonant convection.

  • PDF

건물 계단통에서의 부력에 의한 난류유동 해석 (Simulation of buoyant turbulent flow in a stairwell)

  • 명현국;진은주
    • 설비공학논문집
    • /
    • 제10권2호
    • /
    • pp.217-226
    • /
    • 1998
  • A numerical study has been carried out for two- and three-dimensional buoyant turbulent flow in a stairwell model. The Reynolds-averaged Navier-Stokes and energy equations are solved with the authors'own computer program. Two models by the Boussinesq approximation and the density-gradient form are used for buoyancy terms in the governing equations. Two- and three-dimensional predictions of the velocity and temperature fields are presented and the results are compared with experimental data. Comparisons have also been made in detail with two-dimensional predictions. Two-dimensional and three-dimensional simulations have predicted the overall features of the flow satisfactorily. A better agreement with experiment is achieved with three-dimensional simulations.

  • PDF

유한차분 도식에 따른 건물 계단통에서의 3차원 부력 난류유동 수치해석 (Numerical analysis of 3-dimensional buoyant turbulent flow in a stairwell model with three different finite differencing schemes)

  • 명현국
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.73-80
    • /
    • 1999
  • This paper describes a numerical study of three-dimensional buoyant turbulent flow in a stairwell model with three convective differencing schemes, which include the upwind differencing scheme, the hybrid scheme and QUICK scheme. The Reynolds-averaged Navier-Stokes and energy equations are solved with a two-equation turbulence model. The Boussinesq approximation is used to model buoyancy terms in the governing equations. Three-dimensional predictions of the velocity and temperature fields are presented and are compared with experimental data. Three-dimensional simulations with each scheme have predicted the overall features of the flow fairly satisfactorily. A better agreement with experimental is achieved with QUICK scheme.

  • PDF

상향유동 영역에서 경상등온평면에 의하여 야기된정상장태 자연대류의 다중해 (Multiple solutions for steady state natural convection adjacent to an inclined isothermal flat plate in the region of largely upflow)

  • 유갑종;김병하;최병철
    • 대한기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.731-739
    • /
    • 1987
  • 본 연구에서는 K.J.Riu의 연구를 확장하여, 상향유동 영역에서 수직면으로부 터 경사각이 60˚이하인 경사등온면이 저온의 물속에 잠겨있을때 일어나는 다중정상상 태 영역을 밝혀내고, 이 영역에서 경사각이 열전달, 온도분포, 속도분포, 부력분포 및 Nusselt수에 미치는 영향을 구명하였다.또한 해석방법은 이제까지 발표된 연구결과 와 비교검토하기 위하여 기존 논문에서와 같이 상사해석을 사용하였다.

차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구 (A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure)

  • 박경우;이주형;박희용
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.