• Title/Summary/Keyword: Bunkering

Search Result 73, Processing Time 0.034 seconds

A Study on the Standard for the Safety Zone in the Domestic LNG TTS Bunkering (국내 LNG TTS 벙커링 시 안전구역 기준에 관한 연구)

  • Park, Sung-In;Roh, Jae Seung;Park, Jaehee;Park, Kyoungmin;Shin, Dongkyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.323-329
    • /
    • 2022
  • This paper suggests an example guideline of a safety zone layout for the domestic LNG Truck-To-Ship (TTS) bunkering. The safety zone is one of the controlled area in LNG bunkering and its layout is required as a fundamental safety barrier. While the international standard provides a layout methodology of the safety zone, its detail application is not user-friendly and only possible with a level of the process engineering. In the domestic case, the enforcement regulations are applied for LNG bunkering but the safety zone is not properly defined for TTS operation. Considerations are made for the intuitive approach of the safety zone layout and an example guideline is suggested for application in the domestic TTS bunkering. A technical background of the guideline is described and its applicability is demonstrated with regard to the characteristics of TTS bunkering. The findings of the study are summarized in association with a practical layout of the safety zone, contributing to the safety culture in the domestic LNG bunkering.

A Study on the Development of Educational Programs for LNG Bunkering in Consideration of the Safety System

  • Han, Se-Hyun;Yun, Yong-Sup;Kim, Jong-Su;Lee, Young-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • This paper aims at presenting bunkering educational programs for LNG fueled ship taking into consideration existing similar education programs and safety systems at the international level in order to enhance both seafarers' and vessels' safety. Heavy fuel oil has typically been used as fuel of ship propulsion. The competitiveness of the fuel oil is recently getting weak in terms of cost and environmental aspects. Liquefied natural gas is introduced for ship propulsion in the maritime field as a new energy source replacing heavy fuel oil. In order to prepare for installation and operation of LNG fueled propulsion ship on board, International Maritime Organization has discussed this subject for about 10 years. As a result of the discussion on such ships in IMO, the International Code of Safety for Ships Using Gases or Other Low-Flash-Point Fuels entered into force on the year 2015. International organizations and several countries therefore drives actively entire researches and other businesses with a view to providing equipment and system of LNG bunkering. The systems are divided into ship-to-ship transfer, terminal / pipeline-to-ship transfer and truck-to-ship transfer. By adopting transfer system of LNG bunkering, many human resources will be needed in these areas on scene as well as on managing, operating, trading, finance, design of LNG bunkering industries. LNG bunkering is just in the beginning stage. Hence, this paper reviews and proposes professional educational programs of LNG bunkering in consideration of technical aspects of the safety system of LNG bunkering based on the types of bunkering systems.

A Study on the Determinants Affecting Global Tramper Companies' Bunkering Port Selection Using AHP Method (AHP를 활용한 부정기선사의 벙커링 항만 선정요인에 대한 연구)

  • Ahn, Ji Young;Ryu, Hee Chan;Lee, Choong-bae
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.3
    • /
    • pp.15-28
    • /
    • 2022
  • Bunkering refers to the supply of bunker fuel necessary for the ship operation, as well as minimizing the price and supply cost of fuel itself, and includes supplying good quality fuel oil in a timely manner and at the optimal port. Bunkering is an important criterion in terms of cost for shipping companies because bunkering involves a significant cost to the purchaser of bunkering from the time of initial purchase. This study aims to prioritize selection criteria for tramper companies to call port for bunkering. For this study, the variables were selected by analyzing the common criteria such as price, location, bunker quality and service and infrastructure etc. employed in previous studies. The AHP method was employed to prioritize the criteria in order. As a result of the analysis, the high level factors appeared in the order of price, location, bunkering quality and port service and infrastructure factors. The importance of price criterion and location criterion was found to be high. In the low level criterion of price, the bunker price per MT was ranked first in importance. In terms of location criteria, the location on the main trade route was high. In the low criteria of bunker quality and port service, the bunkering available types and bunker quality were found to be important factors, and in the low level criteria of infrastructure, anchorage and availability of bunkering during loading and discharging and port security factors were found to be important criteria. This study provides the guidelines for research designed to compare the bunkering port selection factors and to derive their importance suggesting the ways to enhance competitiveness as a bunkering port.

A Study on the Design of Training Contents for LNG Bunkering Workers (LNG 벙커링 종사자 교육 콘텐츠 설계에 관한 연구)

  • Yoo, Hyoung-Soo;Roh, Beom-Seok;Kang, Suk-Yong;Seo, Seong-Min;Jung, Dong-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.809-818
    • /
    • 2022
  • The number of ships using liquefied natural gas (LNG) as fuel is increasing to respond to the International Maritime Organization's (IMO) air pollutant emission regulations. At the same time, the need to expand LNG bunkering infrastructure for stable fuel supply and demand for ships is emerging. LNG bunkering is carried out in three ways: truck to ship (TTS), pipe to ship (PTS), and ship to ship (STS). In foreign countries, all three methods are being carried out, but in Korea, LNG bunkering is carried out only with the TTS method owing to the lack of infrastructure. LNG bunkering is a high-risk operation. For safe bunkering operations, the competence of the workers is extremely important, and a professional training course is required to strengthen the competence. This study was conducted to design training contents for LNG bunkering workers for fostering LNG bunkering experts and performing safe and systematic bunkering work. To this end, the current status of LNG-fueled ships and bunkering was identified, and related domestic and abroad educational contents were analyzed. In addition, opinions on the importance of educational contents were collected through expert questionnaires. Consequently, we designed training contents suitable for various training targets and divided them into basic and advanced training courses, with a duration of 4 days, and proposed. Based on the designed training contents, if additional research is conducted by sufficiently reflecting Korea's bunkering environment, it will be of great help to improve the competence of LNG bunkering workers and to foster human resources.

Consequence Assessment for Emergency Release of LNG Bunkering (액화천연가스 연료 급유 중 발생하는 사고 평가)

  • Park, Yongtae;Kim, Kijung;Lee, Jaeik
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.94-96
    • /
    • 2013
  • Since LNG has explosive properties and difficulty to handle, it was avoided using LNG as fuel. However, recently LNG has been considered as alternative fuel of HFO. Several LNG fuel supply system has developed. Furthermore, STX ONS is developing LNG fuel bunkering system and bunkering shuttle. Bunkering shuttle carries out refueling LNG fuel while LNG fuel ship is on cargo work. In case of emergency, bunkering shuttle breakaway from the ship but a little amount of LNG falls down on deck. It can disperse to cargo work area also can explode. In this case LNG dispersed on deck was not considerable.

  • PDF

Parametric Investigation of BOG Generation for Ship-to-Ship LNG Bunkering

  • Shao, Yude;Lee, Yoon-Hyeok;Kim, You-Taek;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • As a fuel for ship propulsion, liquefied natural gas (LNG) is currently considered a proven and reasonable solution for meeting the IMO emission regulations, with gas engines for the LNG-fueled ship covering a broad range of power outputs. For an LNG-fueled ship, the LNG bunkering process is different from the HFO bunkering process, in the sense that the cryogenic liquid transfer generates a considerable amount of boil-off gas (BOG). This study investigated the effect of the temperature difference on boil-off gas (BOG) production during ship-to-ship (STS) LNG bunkering to the receiving tank of the LNG-fueled ship. A concept design was resumed for the cargo/fuel tanks in the LNG bunkering vessel and the receiving vessel, as well as for LNG handling systems. Subsequently, the storage tank capacities of the LNG were $4,500m^3$ for the bunkering vessel and $700m^3$ for the receiving vessel. Process dynamic simulations by Aspen HYSYS were performed under several bunkering scenarios, which demonstrated that the boil-off gas and resulting pressure buildup in the receiving vessel were mainly determined by the temperature difference between bunkering and the receiving tank, pressure of the receiving tank, and amount of remaining LNG.

A Study on Price Competitiveness for LNG Bunkering in the Busan Port (부산항의 LNG 벙커링 가격 경쟁력 확보 방안)

  • KIM, Geun-Sub
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.123-133
    • /
    • 2016
  • LNG(Liquefied Natural Gas) bunkering has become an important issue with the enforcement of environment regulations in shipping industry required by the International Maritime Organization (IMO). With increased attention on LNG bunkering, many studies that focus on safety, regulation, demand forecasting, and the feasibility of LNG fueled ships have been carried out. However, most of the existing research has not included considerations of the price of LNG bunkering and its competitiveness. This paper, therefore, suggests ways to increase price competitiveness in the LNG bunkering market in the Busan Port. This paper analyzes the LNG bunkering supply mechanism by investigating various LNG bunkering terminal business in the LNG supply market. Factors that determine LNG bunkering price and its elasticity are also identified. Market players who want to operate LNG bunkering terminals in the Busan Port should introduce a merchandising trade method that is able to exclude the "Korea premium" in order to increase price competitiveness. This paper also suggests adoptable strategies such as the use of TPS (Terminal to Ship via Pipeline) type of bunkering service and the importance of location for minimizing initial investment cost.

A Study of LNG Bunkering Demands on Ulsan Port for Demonstration of Floating LNG Bunkering Terminal (해상부유식 LNG 벙커링 터미널 시범사업을 위한 울산항 LNG 벙커링 수요전망에 관한 연구)

  • Kim, Ki-Dong;Choi, Kyoung-Shik;Oh, Yong-sam;Cho, Sang-Hoon;Kim, Sung-Hun;Shin, Dong-Geun;Jung, Dong-ho;Kim, Hack-Eun;Shin, Dong-hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.65-71
    • /
    • 2017
  • LNG is being spotlighted as a clean marine fuel because of recent trend in reinforcement of marine environmental regulation. In this paper, demand prospect of LNG bunkering for Ulsan port is carried out to analgize the possibility of commercialization of floating LNG bunkering terminal. Environmental analysis for LNG bunkering and LNG bunkering trends of competitive ports in the world are considered to draw out the prospection of LNG bunkering demand in Ulsan. As a result, car carrie and oil carrier were expected to have more possibility in switching to LNG fuelled ship. The LNG bunkering demand in Ulsan. As a result, car carrier and oil carrier were expected to have more possibility in switching to LNG fuelled ship. The LNG bunkering demand in Ulsan port was expected to be about from 650,000 ton to 900,000 ton in 2030 and Ulsan port is prospected to be a good port for FLBT business in th future.

A Study on Improving the Legislation and Institution of Bunkering Business (선박급유업의 법제도적 개선방안에 관한 연구)

  • Lee, Sang-Il;Ahn, Ki-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.376-384
    • /
    • 2017
  • Ship's Bunkering Business is one of the essential businesses creating added values of the port as a hub for a stream of the international logistics. Regulatory considerations of ship's bunkering business should be made to create a more relevant system and stabilize the bunkering industry so that the ports may produce more substantial added values. This paper suggests revisions the Harbor Transport Business Act, the Marine Transport Act, putting forward an idea of unifying safety management systems, establishing a guideline for bunker quality managements, and changing the laws regarding any wrongdoings of bunker suppliers. In conclusion, in order to increase the managerial integrity of the bunkering operators, reasonable burdens should be distributed across the government, refinery companies and ship-owners to achieve a more balanced state and enable long-term development to advance the business at issue, following a step-by-step approach to amend the contract practice, the laws and the systems.