• Title/Summary/Keyword: Bulk samples

Search Result 528, Processing Time 0.035 seconds

Physical Properties and Apparent Thermal Diffusivity of the Soils where Soil Temperature is Measured Regularly (기상청(氣象廳) 지온(地溫) 측정(測定) 토양(土壤)의 물리적(物理的) 성질(性質)과 겉보기 열확산(熱擴散) 계수(係數) 산정(算定))

  • Song, Kwan-Cheol;Jung, Yeong-Sang;Kim, Byung-Chan;Ahn, Yoon-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.220-230
    • /
    • 1992
  • Soil temperature is one of the important environmental factors which control all the physical, chemical and biological processes in soil including germination and root growth of plants and other organisms living in the soil ecosystem. Soil water and nutrient availability and mobility are temperature dependent. Soil temperature change is depended primarily upon energy exchange in soil surface, meteorological variance and physical properties of the soils which are closely related to heat transfer mechanism. In this study physical properties including bulk density, soil texture and organic matter content were measured and thermal diffusivity on the soils was calculated. Soil samples from the 66 meteorological stations under the Korea Meteorology were collected and the physical parameters were measured. To obtain relationship between thermal diffusivity and soil water content a heat probe thermal diffusivity measurement apparatus was designed and used in this experiment. According to the survey on soil physicsal properties on the 66 meteorological stations, the 52% of the surface soil texture were sandy loam and laomy sand or sand, 38% were loam and silty loam, and 10% were clay loam and silty clay loam. The bulk density which was closely related with thermal properties showed average of $1.41g/cm^3$ for sandy soils, $1.33g/cm^3$ for loam and silty loam soils, and $1.21g/cm^3$ for clay loam and silty clay loam soils. The apparent thermal diffusivity of the upper layer from 0 to 30cm ranged from 1.16 to $8.40{\times}10^{-3}cm^3/sec$ with average of $3.53{\times}10^{-3}cm^3/sec$. The apparent thermal diffusivities of the Jeju soils of which organic matter contents were high and the bulk densities were low were near $2{\times}10^{-3}cm^3/sec$. The thermal diffusivity of snow measured in Chuncheon ranged from 0.822 to $2.237{\times}10^{-3}cm^3/sec$. The damping depth calculated from the thermal diffusivity ranged from 5.92 to 13.65cm for daily basis and 124 to 342cm for yearly basis. The significant regression equation to estimate thermal diffusivity with bulk density and soil water content was obtained by the heat probe in laboratory.

  • PDF

Changes in the Linear Compressibility and Bulk Modulus of Natural Stilbite Under Pressure with Varying Pressure-Transmitting Media (천연 스틸바이트의 압력전달매개체에 따른 선형압축률 및 체적탄성률 비교 연구)

  • Hwang, Huijeong;Lee, Hyunseung;Lee, Soojin;Jung, Jaewoo;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • This study is a preliminary step to understand the reaction between various liquids and zeolite in the subduction zone environment. Stilbite, NaCa4(Al9Si27)O72·28(H2O), was selected and high pressure study was conducted on compressional behavior by the pressure-transmitting medium (PTM). Water and NaHCO3 solution that can exist in the subduction zone was used as PTM, and samples were pressurized from ambient to a maximum of 2.5 GPa. Below 1.0 GPa, both experiments show a low linear compressibility in the range of 0.001 to 0.004 GPa-1 and a high bulk modulus of 220(1) GPa. This is presumably because the structure of the stilbite becomes very dense due to insertion of water molecules or cations into the channel. On the other hand, at 1.0 GPa or higher, the trends of the two experiments are different. In the water run, the linear compressibility of the c-axis is increased to 0.006(1) GPa-1. In the NaHCO3 run, the linear compressibility of the b- and c-axis is increased to 0.006(1) GPa-1. The bulk modulus after 1.0 GPa shows values of 40(1) and 52(7) GPa in water and NaHCO3 run, respectively, confirming that stilbite becomes more compressible than that before 1.0 GPa. It is caused by the migration of cations and water molecules inside the channel, as the water molecules in the PTM start to freeze and stop to insert toward the channel at 1.0 GPa or more. In the NaHCO3 run, it is assumed that the distribution of extra-framework species inside the structure is changed by substitution of the Na+ cation. It can be expected from tendency of the relative intensity ratio of the (001) and (020) peaks which show a different from that of the water run.

A study on the status of asbestos use on ships (선박에서의 석면 사용실태 연구)

  • Park, Seung-Hyun;Chung, Eun-Kyo;Kwon, Ji-Woon;Kim, Kab-Bae;Chung, Kwang-Jae;Yi, Gwang-Yong;Shin, Jung-Ah;Lee, In-Seop;Kang, Seong-Kyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.123-127
    • /
    • 2011
  • Objectives: The purpose of this study was to investigate the status of asbestos-containing materials (ACMs) used on ships and to consider measures for preventing worker exposure to asbestos fibers. Methods: A total of 17 ships including 16 ships under repair and a ship under construction at shipyards in Korea were investigated. Bulk samples were collected from suspected ACMs on engine exhaust pipes, boiler steam pipes, generator exhaust pipes, and etc. in ships in order to identify the presence of ACMs. Types and contents of asbestos were determined using polarized light microscopy (PLM). Results: ACMs were found from 14 ships out of 17 ships investigated. Only chrysotile asbestos was found from all samples. ACMs were mainly found from samples collected at the exhaust pipes of the engine, generator and incinerator, and boiler steam pipes where exhaust gases or steam of high temperature pass through. In most cases, types of ACMs were asbestos-containing fabrics such as asbestos tape. Friable ACMs were also found in some cases. Use of ACMs on ships was relevant to built time and owner of the ships rather than type and tonnage of the ships. Conclusions: ACMs were found from most ships built prior to 2000s. Therefore, measures for preventing asbestos-related diseases such as preparation of asbestos map on the ship and installation of warning signs, hazard communication with workers (ship-repairing workers, engine room workers and etc.), and follow-up for worker's health management are needed.

The Evaluation on the exiting greens of Hwasan Country Club by undisturbed Soil Core Analysis (토양 코아 분석을 통한 화산 골프장의 조성된 그린에 대한 평가)

  • 이상재;허근영;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • The subsurface environment of the root zone area can set the stae for "do or die" of the turfgrass plant. The good condition of the greens is verified by their physical properties. Therefore, this study was carried to evaluate on the existing green of Hwasan C.C. by undisturbed soil Core Anaysis. We completed the ISTRC SYSTEM BenchMarking of the undisturbed core samples taken from Green #1, Green #5, Green #9-"Best" area, and Green #9-"Stressed" area for the Hwasan C.C.. It was also our understanding that the greens were in "good" to "very good" conditioni. THe exception might be Green #9-"Stress" area, which was the stressed area. The stressed area was confined to a ridge across Green #9. The organic content test results comfirmed the development of organic layering in depth 0-2.5cm. For the amount of compaction in the upper root zones and te development of the green's respective organic layers, the infiltration rates were high in Green #1, Green #5, and Green #9 "Stressed" area. The depicted aerificaton hole might be the probable cause of the relatively high infiltraton rate. Green #9-"Best" area had a tested infiltration rate of 18.75cm/hr. Either this area had not been aerified, or the undisturbed sample did not contain a aerification cavity. The water retention capacity of the undisturbed samples was good. When the greens were first constructed, the original root zone mix had been relatively low water retention properties. And the bulk density and the porosity of the undisturbed samples were good. In the result, all the greens were similar except for the infiltration. Thus, we supposed that Green #9-"Stressed" area might be ainly influenced by the amount of irrigation water and the configuration of the green's surface. There had been a reduction in the amount of irrigation water as the water retention capacity in the greens was promoted. Especially, it had gradually become more of a problem as the green had matured in Green #9-"Stressed" area. Because Green #9-"Stressed" area was a ridge area. The reduction in the amount of irrigation water might be the probable cause of the stress in Green #9-"Stressed" area. Our final observation related to the soil texture and the particle size distribution of the sand. Though and sand contant of all the tested greens were good, the gravel content of them exceeded ISTRC Guidelines. In particle size distribution of the sand, the very coarse and the coarse content of all the tested greens exceeded, but the rest was insufficient. The stability is a function of the material retained on the 0.25mm mesh screen. But, the content of all the tested greens was very insufficient. Though all the greens was serviceable, the coarse root zone sands, such as the sand in the tested greens, tended to be "unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.;unstable". Thus, we recommend using a topdressing/aerification sand which should be more in line with ISTRC/USGA Guidelines.ines.

  • PDF

Superconductor Preparation by use of YBa2Cu3Ox powder and BaPbO3 Additive (YBa2Cu3Ox 분말과 첨가제 BaPbO3를 이용한 초전도체 제작)

  • Chu, Soon-Nam;Park, Jung-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1771-1776
    • /
    • 2011
  • In this paper, as an attempt to improve the preparation conditions of $YBa_2Cu_3Ox$ superconducting bulk samples, the properties of $YBa_2Cu_3Ox$ superconductor depending on the particle size of YBCO powder and $BaPbO_3$ as an additive have been investigated, and a study on the effects of additive to the density, grain alignment, and porosity of samples that affect the critical current of superconductor has been performed. In order to prepare superconductor, $YBa_2Cu_3Ox$ powder synthesized by sol-gel method, showing a size distribution of 0.2~1 ${\mu}m$ was used. The $BaPbO_3$ added to promote grain growth and to decrease porosities and weak links between grain boundaries of $YBa_2Cu_3Ox$ superconductors. In the samples prepared by sol-gel synthesized powder with 10, 20, and 30 wt% conductive $BaPbO_3$ additives, the sample with 20 wt% $BaPbO_3$ obtained the highest critical current of 4.74 A, showing 20 wt% higher critical current than that with solid state synthesized powder.

Structure and Magnetic Properties of Ho and Ni Co-doped BiFeO3 Ceramics

  • Hwang, J.S.;Yoo, Y.J.;Park, J.S.;Kang, J.H.;Lee, K.H.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.183-183
    • /
    • 2014
  • Recently, multiferroic materials gain much attention due to their fascinating fundamental physical properties. These materials offer wide range of potential applications such as data storage, spintronic devices and sensors, where both electronic and magnetic polarizations can be coupled. Among single-phase multiferroic materials, $BiFeO_3$ is typical because of the room-temperature magnetoelectric coupling in view of long-range magnetic- and ferroelectric-ordering temperatures. However, $BiFeO_3$ is well known to have large leakage current and small spontaneous polarization due to the existence of oxygen vacancies and other defects. Furthermore the magnetic moment of pure $BiFeO_3$ is very weak owing to its antiferromagnetic nature. Recently, various attempts have been performed to improve the multiferroic properties of $BiFeO_3$ through the co-doping at the A and the B sites, by making use of the fact that the intrinsic polarization and magnetization are associated with the lone pair of $Bi^{3+}$ ions at the A sites and the partially-filled 3d orbitals of $Fe^{3+}$ ions at the B sites, respectively. In this study, $BiFeO_3$, $Bi_{0.9}Ho_{0.1}FeO_3$, $BiFe_{0.97}Ni_{0.03}O_3$ and $Bi_{0.9}Ho_{0.1}Fe_{0.97}Ni_{0.03}O_3$ bulk compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Ho_2O_3$, $Fe_2O_3$ and $NiO_2$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ for 24 h to produce the samples. The samples were immediately put into an oven, which was heated up to $800^{\circ}C$ and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent and temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer and superconducting quantum-interference device.

  • PDF

An Investigation on Gridline Edges in Screen-Printed Crystalline Silicon Solar Cells

  • Kim, Seongtak;Park, Sungeun;Kim, Young Do;Kim, Hyunho;Bae, Soohyun;Park, Hyomin;Lee, Hae-Seok;Kim, Donghwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.2-490.2
    • /
    • 2014
  • Since the general solar cells accept sun light at the front side, excluding the electrode area, electrons move from the emitter to the front electrode and start to collect at the grid edge. Thus the edge of gridline can be important for electrical properties of screen-printed silicon solar cells. In this study, the improvement of electrical properties in screen-printed crystalline silicon solar cells by contact treatment of grid edge was investigated. The samples with $60{\Omega}/{\square}$ and $70{\Omega}/{\square}$ emitter were prepared. After front side of samples was deposited by SiNx commercial Ag paste and Al paste were printed at front side and rear side respectively. Each sample was co-fired between $670^{\circ}C$ and $780^{\circ}C$ in the rapid thermal processing (RTP). After the firing process, the cells were dipped in 2.5% hydrofluoric acid (HF) at room temperature for various times under 60 seconds and then rinsed in deionized water. (This is called "contact treatment") After dipping in HF for a certain period, the samples from each firing condition were compared by measurement. Cell performances were measured by Suns-Voc, solar simulator, the transfer length method and a field emission scanning electron microscope. According to HF treatment, once the thin glass layer at the grid edge was etched, the current transport was changed from tunneling via Ag colloids in the glass layer to direct transport via Ag colloids between the Ag bulk and the emitter. Thus, the transfer length as well as the specific contact resistance decreased. For more details a model of the current path was proposed to explain the effect of HF treatment at the edge of the Ag grid. It is expected that HF treatment may help to improve the contact of high sheet-resistance emitter as well as the contact of a high specific contact resistance.

  • PDF

The study for fabrication and characteristic of Li$_2$O-2SiO$_2$conduction glass system using conventional and microwave energies (마이크로파와 재래식 열원을 이용한 고체 전지용 Li$_2$O-2SiO$_2$계 전도성 유리의 제조 및 특성에 관한 연구)

  • Park, Seong-Soo;Kim, Kyoung-Tae;Kim, Byoung-Chan;Park, Jin;Park, Hee-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.66-72
    • /
    • 2000
  • The behavior of nucleation and crystallization in the $Li_2O_3-SiO_2$ glass heat-treated at different condition under the conventional and microwave processing was studied by differential thermal analysis (DTA), X-ray diffractometry (XRD), optical microscopy (OM), and electrical conductivity measurement. Nucleation temperature and temperature of maximum nucleation rate in both conventionally and microwave heat-treated samples were 460~$500^{\circ}C$ and $580^{\circ}C$, respectively. It was expected that the probability for bulk crystallization increased in microwave heat-treated sample, compared to conventionally heat-treated one. Degree of crystallization increased with increasing crystallization temperature in both conventionally and microwave heat-treated samples. However, pattern of crystallization growth under microwave processing appeared to be quite different from that under the conventional one due to its internal or volumetric heating. Electrical conductivity of conventionally and microwave heat-treated samples were 1.337~2.299, 0.281~~$0.911{\times}10^{-7}\Omega {\textrm}{cm}^{-1}$, respectively.

  • PDF

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.

Comparison of Water Potential Parameters in Aster scaber and Synurus deltoides Leaves Obtained from P-V Curves (P-V 곡선법에 의한 참취와 수리취의 수분포텐셜 비교)

  • Lee, Kyeong-Cheol;Jeon, Seong-Ryeol;Han, Sang-Sup
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.413-418
    • /
    • 2011
  • This study was carried out to establish a proper cultivation site and diagnose the drought-tolerance of Aster scaber and Synurus deltoides leaves by using Pressure-volume curves. In order to measure pressure-volume (P-V) curves, Aster scaber and Synurus deltoides were cut off above ground part and the tip of the cutting were placed in water, which was covered with a plastic bag. Samples were kept overnight (about 12 hours) in darkness at room temperature (20~25$^{\circ}C$) to achieve maximal turgor (full saturation). The pressure in the chamber was gradually increased from 0.3MPa to 1.8MPa by nitrogen gas. After measured, leaf samples were dried at 80$^{\circ}C$ for 48 hours and dry weight of each samples were determined. The result of the original bulk osmotic potential at maximum turgor ${\Psi}^{sat}_o$ sat was lower -0.8 MPa in Aster scaber leaves than -0.7 MPa Synurus deltoides leaves. Also the osmotic potential at incipient plasmolysis ${\Psi}^{tlp}_o$ in Aster scaber leave was -0.9 MPa. In contrast, the value of maximum bulk modulus of elasticity $E_{max}$ of Aster scaber leaves were approximately two folds higher than that of Synurus deltoides leaves. The values of the relative water content at incipient plasmolysis $RWC^{tlp}$ are all above 90% showing that the function of osmoregulation is somewhat better, and Vo/DW, Vt/DW, Ns/DW of Synurus deltoides leaves were approximately 1~2 times higher than that of Aster scaber leaves. Thus, responses to water relations of Aster scaber and Synurus deltoides such as ${\Psi}^{sat}_o$, ${\Psi}^{tlp}_o$, $E_{max}$, ${\Psi}_{P,max}$, $RWC^{tl}$ were shown that the Aster scaber leaves was slightly higher drought-tolerance than Synurus deltoides leaves. However, in both of Aster scaber and Synurus deltoides, occurring incipient plasmolysis at the high water content, have a relatively lower drought-tolerance property indicating that growth of these plants are cultivated appropriate in high moisture soil sites.