DOI QR코드

DOI QR Code

Changes in the Linear Compressibility and Bulk Modulus of Natural Stilbite Under Pressure with Varying Pressure-Transmitting Media

천연 스틸바이트의 압력전달매개체에 따른 선형압축률 및 체적탄성률 비교 연구

  • Hwang, Huijeong (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Hyunseung (Department of Geological Sciences, Pusan National University) ;
  • Lee, Soojin (Department of Geological Sciences, Pusan National University) ;
  • Jung, Jaewoo (Global Ocean Research Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Yongmoon (Department of Geological Sciences, Pusan National University)
  • 황희정 (광주과학기술원 지구환경공학부) ;
  • 이현승 (부산대학교 지질환경과학과) ;
  • 이수진 (부산대학교 지질환경과학과) ;
  • 정재우 (한국해양과학기술원 대양자원연구센터) ;
  • 이용문 (부산대학교 지질환경과학과)
  • Received : 2022.07.26
  • Accepted : 2022.08.29
  • Published : 2022.09.30

Abstract

This study is a preliminary step to understand the reaction between various liquids and zeolite in the subduction zone environment. Stilbite, NaCa4(Al9Si27)O72·28(H2O), was selected and high pressure study was conducted on compressional behavior by the pressure-transmitting medium (PTM). Water and NaHCO3 solution that can exist in the subduction zone was used as PTM, and samples were pressurized from ambient to a maximum of 2.5 GPa. Below 1.0 GPa, both experiments show a low linear compressibility in the range of 0.001 to 0.004 GPa-1 and a high bulk modulus of 220(1) GPa. This is presumably because the structure of the stilbite becomes very dense due to insertion of water molecules or cations into the channel. On the other hand, at 1.0 GPa or higher, the trends of the two experiments are different. In the water run, the linear compressibility of the c-axis is increased to 0.006(1) GPa-1. In the NaHCO3 run, the linear compressibility of the b- and c-axis is increased to 0.006(1) GPa-1. The bulk modulus after 1.0 GPa shows values of 40(1) and 52(7) GPa in water and NaHCO3 run, respectively, confirming that stilbite becomes more compressible than that before 1.0 GPa. It is caused by the migration of cations and water molecules inside the channel, as the water molecules in the PTM start to freeze and stop to insert toward the channel at 1.0 GPa or more. In the NaHCO3 run, it is assumed that the distribution of extra-framework species inside the structure is changed by substitution of the Na+ cation. It can be expected from tendency of the relative intensity ratio of the (001) and (020) peaks which show a different from that of the water run.

본 연구는 섭입대 환경에서 다양한 액체들과 제올라이트와의 반응을 이해하기 위한 선행단계로, 섭입대 내 대표 제올라이트 중 하나인 스틸바이트(NaCa4(Al9Si27)O72·28(H2O))의 압축거동을 관찰하였다. 물과 NaHCO3 용액을 매개체로 사용하였으며, 상압에서 최대 2.5 GPa까지 가압하였다. 1.0 GPa 이하에서는 두 실험 모두 0.001~0.004 GPa-1 범위의 낮은 선형압축률과 220(1) GPa의 높은 체적탄성률을 보였다. 이는 물분자 또는 양이온이 스틸바이트의 채널 내부로 유입되면서 구조가 매우 치밀해졌기 때문으로 추측된다. 반면, 1.0 GPa 이상에서는 두 실험의 경향이 다르게 관찰되었다. 물의 실험에서는 c축, NaHCO3의 실험에서는 b, c축의 선형압축률이 모두 0.006(1) GPa-1으로 급격하게 증가하였다. 체적탄성률은 물과 NaHCO3의 실험에서 각각 40(1), 52(7) GPa의 값을 보여, 1.0 GPa 이전과 비교했을 때 압축률이 4배 이상 높아졌다. 이는 1.0 GPa 이상의 압력에서 압력매개체 내 물이 얼기 시작하면서 스틸바이트 내부로 유입이 멈추었고, 단지 채널 내에서 양이온 및 물분자가 이동함에 따라서 생기는 현상으로 판단된다. 특히 NaHCO3의 실험에서는 소듐 양이온이 치환됨에 따라 구조 내부의 분포가 달라졌을 것으로 추측되며, 이는 (001)과 (020)피크의 상대강도 비율이 물의 실험과 다른 경향으로 나타난 것을 근거로 예상해볼 수 있다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 기본연구지원사업(NRF-2022R1F1A1074593), 2022년도 광주과학기술원의 GRI(GIST연구원) 사업, 2022년 해양수산부 재원으로 해양수산과학기술진흥원(서태평양 해저산고코발트 망간각 자원개발 유망광구 선정, 과제번호 20220509)의 지원을 받아 수행되었습니다. 방사광가속기를 이용한 고압 회절실험은 포항가속기연구소의 지원으로 수행되었으며, 도움을 주신 이현휘 박사님께 감사의 말씀을 드립니다.

References

  1. Abers, G.A., van Keken, P.E., Kneller, E.A., Ferris, A. and Stachnik, J.C., 2006, The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow. Earth and Planetary Science Letters, 241(3), 387-397. https://doi.org/10.1016/j.epsl.2005.11.055
  2. Akizuki, M. and Konno, H., 1985, Order-disorder structure and the internal texture of stilbite. American Mineralogist, 70(7-8), 814-821.
  3. Akizuki, M., Kudoh, Y. and Satoh, Y., 1993, Crystal structure of the orthorhombic [001] growth sector of stilbite. European Journal of Mineralogy, 5(5), 839-843. https://doi.org/10.1127/ejm/5/5/0839
  4. Angel, R.J., Alvaro, M., and Gonzalez-Platas, J., 2014, EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift fur Kristallographie - Crystalline Materials, 229(5), 405-419. https://doi.org/10.1515/zkri-2013-1711
  5. Birch, F., 1947, Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. https://doi.org/10.1103/PhysRev.71.809
  6. Bridgman, P.W., 1912, Water, in the Liquid and Five Solid Forms, under Pressure. Proceedings of the American Academy of Arts and Sciences, 47(13), 441-558.
  7. Cruciani, G., Artioli, G., Gualtieri, A., Stahl, K. and Hanson, J.C., 1997, Dehydration dynamics of stilbite using synchrotron X-ray powder diffraction. American Mineralogist, 82(7-8), 729-739. https://doi.org/10.2138/am-1997-7-810
  8. Hermann, J. and Spandler, C.J., 2007, Sediment Melts at Sub-arc Depths: an Experimental Study. Journal of Petrology, 49(4), 717-740. https://doi.org/10.1093/petrology/egm073
  9. Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.-P., Cynn, H., Vogt, T., Kao, C.-C. and Mao, H.-K., 2017, A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geoscience, 10(12), 947-953. https://doi.org/10.1038/s41561-017-0008-1
  10. Karato, S.-I. and Jung, H., 2003, Effects of pressure on hightemperature dislocation creep in olivine. Philosophical Magazine, 83(3), 401-414. https://doi.org/10.1080/0141861021000025829
  11. Le Bail, A., Duroy, H. and Fourquet, J.L., 1988, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23(3), 447-452. https://doi.org/10.1016/0025-5408(88)90019-0
  12. Lebow, S.T., Foster, D.O. and Lebow, P.K., 1999, Release of copper, chromium, and arsenic from treated southern pine exposed in seawater and freshwater. Forest Products Journal, 49, 80-89.
  13. Mao, H.K., Xu, J. and Bell, P.M., 1986, Calibration of the Ruby Pressure Gauge to 800-Kbar Under Quasi-hydrostatic Conditions. Journal of Geophysical Research-Solid Earth and Planets, 91(B5), 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  14. Mei, S. and Kohlstedt, D.L., 2000a, Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. Journal of Geophysical Research: Solid Earth, 105(B9), 21457-21469. https://doi.org/10.1029/2000JB900179
  15. Mei, S. and Kohlstedt, D.L., 2000b, Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. Journal of Geophysical Research: Solid Earth, 105(B9), 21471-21481. https://doi.org/10.1029/2000JB900180
  16. Murnaghan, F.D., 1944, The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30(9), 244-247. https://doi.org/10.1073/pnas.30.9.244
  17. Prescher, C., and Prakapenka, V.B., 2015, DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Research, 35(3), 223-230. https://doi.org/10.1080/08957959.2015.1059835
  18. Ryan, J.G., and Chauvel, C., 2014, 3.13 - The SubductionZone Filter and the Impact of Recycled Materials on the Evolution of the Mantle. In H.D. Holland, and K.K. Turekian, Eds. Treatise on Geochemistry (Second Edition), p. 479-508. Elsevier, Oxford.
  19. Seryotkin, Y.V., Dementiev, S.N. and Likhacheva, A.Y., 2021, Crystal-fluid interaction: the evolution of stilbite structure at high pressure. Physics and Chemistry of Minerals, 48, 1-11. https://doi.org/10.1007/s00269-020-01125-3
  20. Sharp, J.D. and Byrne, R.H., 2019, Carbonate ion concentrations in seawater: Spectrophotometric determination at ambient temperatures and evaluation of propagated calculation uncertainties. Marine Chemistry, 209, 70-80. https://doi.org/10.1016/j.marchem.2018.12.001
  21. Slaughter, M., 1970, Crystal structure of stilbite. American Mineralogist: Journal of Earth and Planetary Materials, 55(3-4_Part_1), 387-397.
  22. Toby, B.H., 2001, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34(2), 210-213. https://doi.org/10.1107/S0021889801002242
  23. Yun, S., Hwang, H., Hwang, G., Kim, Y., Blom, D., Vogt, T., Post, J.E., Jeon, T.-Y., Shin, T.J., Zhang, D.-Z., Kagi, H. and Lee, Y., 2022, Super-hydration and reduction of manganese oxide minerals at shallow terrestrial depths. Nature Communications, 13(1), 1942. https://doi.org/10.1038/s41467-022-29328-y
  24. Zheng, Y.-F. and Hermann, J., 2014, Geochemistry of continental subduction-zone fluids. Earth, Planets and Space, 66(1), 93. https://doi.org/10.1186/1880-5981-66-93