• 제목/요약/키워드: Bulk graphite

검색결과 50건 처리시간 0.02초

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF

새로운 가이드 튜브를 통한 6H-SiC 단결정의 직경 확장에 관한 연구 (The Diameter Expansion of 6H-SiC Single Crystals by the Modification of Inner Guide Tube)

  • 손창현;최정우;이기섭;황현희;최종문;구갑렬;이원재;신병철
    • 한국전기전자재료학회논문지
    • /
    • 제21권9호
    • /
    • pp.795-800
    • /
    • 2008
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. The present research was focused to improve SiC crystal quality grown by PVT method through using the new inner guide tube. The new inner guide tube was designed to prevent the enlargement of polycrystalline region into single crystalline region and to enlarge the diameter of SiC single crystal. The 6H-SiC crystals were grown by conventional PVT process. The seed adhered on seed holder and the high purity SiC source materials are placed on opposite side in sealed graphite crucible surrounded by graphite insulation. The SiC bulk growth was conducted around 2300 $^{\circ}C$ of growth temperature and 50 mbar in an argon atmosphere of growth pressure. The axial thermal gradient across the SiC crystal during the growth was estimated in the range of 15${\sim}$20 $^{\circ}C$/cm.

연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향 (Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting)

  • 윤상현;조문규;정두화;이희수
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

Fabrication and PTCR Characteristics of Porous Barium Titanate Thermistors using Graphite Powders

  • Yoo, Kwang-Soo;Yun, Young-Ho;Lee, Yong-Seok;Lee, Byung-Ha
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.238-241
    • /
    • 1996
  • New porous BaTiO$_3$ thermistors were fabricated using graphite powders (0 to 10 wt. %) and their porosities were in the range of 9.1% to 16.2%. As results of impedance analysis, it was confirmed that the pores affected the grain-boundary resistance and the bulk (grain interior) resistance was constant as about 25 $\Omega$ at room temperature. The magnitude of PTCR effect $(p_{max}/p)$ markedly increased from 3 orders to 7 orders without addition of any acceptor dopant such as Mn or Cr.

  • PDF

X-Ray Diffraction Measurements of Ion-Irradiated Graphite

  • Kim, Dae-Jong;Jang, Chang-Heui;Kim, In-Sup;Kim, Eung-Seon;Chi, Se-Hwan
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2005년도 춘계학술발표회
    • /
    • pp.411-412
    • /
    • 2005
  • There are some differences as a result of comparison between internal and external standard method. Thin-film XRD was used to measure the thin damaged layer by proton irradiation. Experiment was performed by external standard method to measure bulk sample accurately. A little changes of crystallite size and lattice parameter by small dose were observed. X-ray penetrates too deeply above damaged layer of graphite despite of small X-ray incident angle.

  • PDF

연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구 (Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders)

  • 김진천;김용진;김병기;김지순
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

도가니 구조 변경을 통한 6H-SiC 단결정의 직경 확장에 관한 연구 (Diameter Expansion of 6H-SiC Single Crystals by the Modification of Crucible Structure Design)

  • 김정규;견명옥;서정두;안준호;김정곤;구갑렬;이원재;김일수;신병철
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.673-679
    • /
    • 2006
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. In this study, SiC crystal boules were prepared with different angles in trapezoid-shaped graphite seed holders using sublimation physical vapor transport technique (PVT) and then their crystal quality was systematically investigated. The temperature distribution in the growth system and the crystal shape were varied with angles in trapezoid-shaped graphite seed holders, which was successfully simulated using 'Virtual Reactor'. The SiC polytype proved to be the n-type 6H-SiC from the typical absorption spectrum of SiC crystal. The micropipe densities of SiC wafers in this study were measured to be < $100/cm^2$. Consequently, SiC single crystal with large diameter was successfully achieved with changing angle in trapezoid-shaped graphite seed holders.

천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅 (Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite )

  • 김규리;곽영원;전호영;최창호
    • 청정기술
    • /
    • 제28권4호
    • /
    • pp.293-300
    • /
    • 2022
  • 그래핀의 우수한 기계적, 전기적, 열적 성질은 최근 몇 년 동안 여러 연구 분야에서 지대한 관심을 불러일으켰다. 그래핀을 생산하는 대표적인 방법인 습식공정 중 액상박리(liquid-phase exfoliation, LPE)는 초음파 및 높은 전단응력을 이용하여 벌크흑연을 그래핀으로 박리하는 기술이다. 액상박리에 의해 생산된 그래핀 분산액은 그래핀 잉크로 전환되어 그 활용폭을 더 넓힐 수 있는 장점이 있지만 고품질의 그래핀을 생산하고 가격경쟁력을 확보해야 한다. 위 조건을 만족하기 위해서 그래핀을 효율적으로 박리할 수 있는 공정 확보와 더불어 상대적으로 가격이 저렴한 천연흑연 기반의 그래핀 분산액 및 잉크를 생산해야 한다. 본 연구에서는 합성흑연 보다 약 3배 정도 저렴하고 그 크기는7배 이상 큰 천연흑연을 흐름반응기 액상박리 공정을 이용하여 박리를 시도하고 공정의 최적화와 박리된 그래핀의 구조적, 전기적 특성을 분석하였다. 천연흑연 기반 그래핀의 전기적 특성을 분석하기 위해 잉크 정제화 공정을 거쳐 그래핀 잉크를 생산하고 인쇄 장비를 사용하여 그래핀 패턴을 제작하였다. 본 연구를 통해 보다 경제적인 그래핀 분산액 및 잉크를 생산하고 그래핀 인쇄 소자를 개발할 수 있는 방법을 제시할 수 있을 것으로 기대된다.

Silicon Nitride Layer Deposited at Low Temperature for Multicrystalline Solar Cell Application

  • Karunagaran, B.;Yoo, J.S.;Kim, D.Y.;Kim, Kyung-Hae;Dhungel, S.K.;Mangalaraj, D.;Yi, Jun-Sin
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.276-279
    • /
    • 2004
  • Plasma enhanced chemical vapor deposition (PECVD) of silicon nitride (SiN) is a proven technique for obtaining layers that meet the needs of surface passivation and anti-reflection coating. In addition, the deposition process appears to provoke bulk passivation as well due to diffusion of atomic hydrogen. This bulk passivation is an important advantage of PECVD deposition when compared to the conventional CVD techniques. A further advantage of PECVD is that the process takes place at a relatively low temperature of 300t, keeping the total thermal budget of the cell processing to a minimum. In this work SiN deposition was performed using a horizontal PECVD reactor system consisting of a long horizontal quartz tube that was radiantly heated. Special and long rectangular graphite plates served as both the electrodes to establish the plasma and holders of the wafers. The electrode configuration was designed to provide a uniform plasma environment for each wafer and to ensure the film uniformity. These horizontally oriented graphite electrodes were stacked parallel to one another, side by side, with alternating plates serving as power and ground electrodes for the RF power supply. The plasma was formed in the space between each pair of plates. Also this paper deals with the fabrication of multicrystalline silicon solar cells with PECVD SiN layers combined with high-throughput screen printing and RTP firing. Using this sequence we were able to obtain solar cells with an efficiency of 14% for polished multi crystalline Si wafers of size 125 m square.

  • PDF