• Title/Summary/Keyword: Bulb development

Search Result 142, Processing Time 0.025 seconds

Development of a Fully-Controlled Phytotrons -Temperature and Humidity Control System- (완전제어형(完全制御型) 실험용(實驗用) 작물생육장치(作物生育裝置)의 개발(開發)(I) -온(溫)·습도(濕度) 제어(制御) 시스템-)

  • Lee, K.C.;Ryu, K.H.;Noh, S.H.;Hong, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 1992
  • The aim of this study was to develop a phytotron for studying the effects of environmental factors such as temperature and humidity on plant growth. This equipment consists of the growth chamber, and the measurement and control system including control algorithms required for optimum operation. As the first step of the study, a temperature and humidity control system was developed. The results of this study are summarized as follows ; 1. Pt-100 was selected to measure temperature and a linearized op-amp circuit was developed for signal conditioning. 2. Pt-100 wet bulb thermometer based on Asmann's principle was developed to measure relative humidity. 3. Temperature and relative humidity conditions were controlled by ON-OFF and PWM operation using a PID controller. And an autotuning algorithm using the characteristics of step response was developed to determine optimal PID constants which were independent of the size of apparatus and environmental factors. 4. Under the ambient temperature of $20^{\circ}C{\sim}25^{\circ}C$, the temperature was kept within the error of ${\pm}0.3^{\circ}C$ in the range of $10^{\circ}C{\sim}40^{\circ}C$, and the relative humidity was kept within the error of ${\pm}5%$ in the range of ${\pm}50%{\sim}90%$.

  • PDF

Prediction of Latent Heat Load Reduction Effect of the Dehumidifying Air-Conditioning System with Membrane (분리막 제습공조시스템의 잠열부하 저감효과 예측)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The summer climate is very hot and humid in Korea. The humidity is an important factor in determining thermal comfort. Recently, the research for dehumidification device development has been attempted to save energy that is required for the operation of the current dehumidifiers on the market. Existing dehumidification systems have disadvantages such as wasting energy to drive a compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature so it doesn't have to consume cooling energy. In this paper, the cooling energy savings was studied when a dehumidification system was applied in a model building instead of a chiller. The sensible heat load was almost the same result, but the latent heat load was decreased by 38.9% and the total heat load was decreased by 8.5%. As a result, electric energy used to drive the compressor in a chiller was saved by applying a membrane air-conditioning system instead.

Development of Bipolar Plate Stack Type Microbial Fuel Cells

  • Shin, Seung-Hun;Choi, Young-jin;Na, Sun-Hee;Jung, Seun-ho;Kim, Sung-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.281-285
    • /
    • 2006
  • Microbial fuel cells (MFC) stacked with bipolar plates have been constructed and their performance was tested. In this design, single fuel cell unit was connected in series by bipolar plates where an anode and a cathode were made in one graphite block. Two types of bipolar plate stacked MFCs were constructed. Both utilized the same glucose oxidation reaction catalyzed by Gram negative bacteria, Proteus vulgaris as a biocatalyst in an anodic compartment, but two different cathodic reactions were employed: One with ferricyanide reduction and the other with oxygen reduction reactions. In both cases, the total voltage was the mathematical sum of individual fuel cells and no degradation in performance was found. Electricity from these MFCs was stored in a supercapacitor to drive external loads such as a motor and electric bulb.

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.

A Study on Air Flow Analysis for the Internal Space of the Dehumidifying Air-Conditioning System with A Membrane (분리막 제습공조시스템의 내부 유동 해석에 관한 연구)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.620-625
    • /
    • 2015
  • The summer climate is very hot and humid in Korea. Humidity is an important factor in determining thermal comfort. Recently, research on dehumidification device development has been attempted to save the energy required for operating the dehumidifier. Existing dehumidification systems have disadvantages such as wasting energy to drive the compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature. Therefore. they don't have to consume cooling energy. In this paper, the installation conditions for a membrane system were analyzed to improve the shape and optimum performance of the system. The results showed that the distance between elements was the critical system design factor, and that a distance of 20 mm was the optimal condition for the pressure drop and flow characteristics of the internal air flow.

Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method (실시간 가중 회기최소자승법을 사용한 익일 부하예측)

  • 한도영;이재무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF

Development of an Indirect ELISA and Immunocapture RT-PCR for Lily Virus Detection

  • Kim, Jin Ha;Yoo, Ha Na;Bae, Eun Hye;Jung, Yong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1776-1781
    • /
    • 2012
  • Multiple viruses such as Lily symptomless virus (LSV), Lily mottle virus (LMoV), and cucumber mosaic virus (CMV) are the most prevalent viruses infecting lilies in Korea. Leaf samples and bulbs showing characteristic symptoms of virus infection were collected from Gangwon, Chungnam, and Jeju provinces of Korea in 2008-2011. Coat protein (CP) genes of LSV and LMoV were amplified from collected samples by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into a pET21d(+) expression vector to generate recombinant CPs. The resulting carboxy-terminal His-tagged CPs were expressed in Escherichia coli strain BL21(DE3) by isopropyl-1-thio-${\beta}$-D-galactoside induction. The recombinant proteins were purified using Ni-NTA agarose beads, and the purified proteins were used as an immunogen to produce polyclonal antibodies in rabbits. The resulting polyclonal antisera recognized specifically LSV and LMoV from infected plant tissues in Western blotting assays. Indirect enzymelinked immunosorbent assay and immunocapture RT-PCR using these polyclonal antisera were developed for the sensitive, efficient, economic, and rapid detection of Lily viruses. These results suggest that large-scale bulb tests and economic detection of Lily viruses in epidemiological studies can be performed routinely using these polyclonal antisera.

Olfactory neuropathology in Alzheimer's disease: a sign of ongoing neurodegeneration

  • Son, Gowoon;Jahanshahi, Ali;Yoo, Seung-Jun;Boonstra, Jackson T.;Hopkins, David A.;Steinbusch, Harry W.M.;Moon, Cheil
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.295-304
    • /
    • 2021
  • Olfactory neuropathology is a cause of olfactory loss in Alzheimer's disease (AD). Olfactory dysfunction is also associated with memory and cognitive dysfunction and is an incidental finding of AD dementia. Here we review neuropathological research on the olfactory system in AD, considering both structural and functional evidence. Experimental and clinical findings identify olfactory dysfunction as an early indicator of AD. In keeping with this, amyloid-β production and neuroinflammation are related to underlying causes of impaired olfaction. Notably, physiological features of the spatial map in the olfactory system suggest the evidence of ongoing neurodegeneration. Our aim in this review is to examine olfactory pathology findings essential to identifying mechanisms of olfactory dysfunction in the development of AD in hopes of supporting investigations leading towards revealing potential diagnostic methods and causes of early pathogenesis in the olfactory system.

Morphological Characterization of small, dumpy, and long Phenotypes in Caenorhabditis elegans

  • Cho, Joshua Young;Choi, Tae-Woo;Kim, Seung Hyun;Ahnn, Joohong;Lee, Sun-Kyung
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.160-167
    • /
    • 2021
  • The determinant factors of an organism's size during animal development have been explored from various angles but remain partially understood. In Caenorhabditis elegans, many genes affecting cuticle structure, cell growth, and proliferation have been identified to regulate the worm's overall morphology, including body size. While various mutations in those genes directly result in changes in the morphological phenotypes, there is still a need for established, clear, and distinct standards to determine the apparent abnormality in a worm's size and shape. In this study, we measured the body length, body width, terminal bulb length, and head size of mutant worms with reported Dumpy (Dpy), Small (Sma) or Long (Lon) phenotypes by plotting and comparing their respective ratios of various parameters. These results show that the Sma phenotypes are proportionally smaller overall with mild stoutness, and Dpy phenotypes are significantly stouter and have disproportionally small head size. This study provides a standard platform for determining morphological phenotypes designating and annotating mutants that exhibit body shape variations, defining the morphological phenotype of previously unexamined mutants.

Development and Application of Inquiry Modules for Instruction for the Concept of Straight propagation of Light (빛의 직진 개념 지도를 위한 탐구 학습모듈의 개발 및 적용)

  • Kim, Kyu Hwan;Kim, Jung Bog
    • Journal of Science Education
    • /
    • v.35 no.2
    • /
    • pp.173-192
    • /
    • 2011
  • The purpose of this study was to develop inquiry modules for learning straight propagation of light, to verify their efficiency, and to acquire implications. this study proposes teaching modules for improvements of light experiments, which were developed in this work. Inquiry modules were applied to 75 school teachers(8 elementary school teachers, 67 middle school and high school teachers) for examining that the modules make teachers have the scientific concepts. Then, conception changes were analyzed except 5 teachers who responded poorly. The pre-test result shows that most teachers have alternative conceptions, which is that they thought the bright shape on apparatus's bottom panel itself shown in the textbook as evidence for the path of light's straight propagation. The post-test result shows this alternative conception was changed into scientific conception. Unlikely pretest, most teachers' conception was changed into the scientific conception that the light come from a light source. Teachers are able to express that the light beam comes from a miniature electric bulb. Further more, most teachers can draw light's path correctly; from the miniature electric bulb, through vertical panel having a hole, to the apparatus bottom.

  • PDF