Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2236

Morphological Characterization of small, dumpy, and long Phenotypes in Caenorhabditis elegans  

Cho, Joshua Young (Department of Life Science, School of Natural Sciences, Hanyang University)
Choi, Tae-Woo (Department of Life Science, School of Natural Sciences, Hanyang University)
Kim, Seung Hyun (Department of Life Science, School of Natural Sciences, Hanyang University)
Ahnn, Joohong (Department of Life Science, School of Natural Sciences, Hanyang University)
Lee, Sun-Kyung (Department of Life Science, School of Natural Sciences, Hanyang University)
Abstract
The determinant factors of an organism's size during animal development have been explored from various angles but remain partially understood. In Caenorhabditis elegans, many genes affecting cuticle structure, cell growth, and proliferation have been identified to regulate the worm's overall morphology, including body size. While various mutations in those genes directly result in changes in the morphological phenotypes, there is still a need for established, clear, and distinct standards to determine the apparent abnormality in a worm's size and shape. In this study, we measured the body length, body width, terminal bulb length, and head size of mutant worms with reported Dumpy (Dpy), Small (Sma) or Long (Lon) phenotypes by plotting and comparing their respective ratios of various parameters. These results show that the Sma phenotypes are proportionally smaller overall with mild stoutness, and Dpy phenotypes are significantly stouter and have disproportionally small head size. This study provides a standard platform for determining morphological phenotypes designating and annotating mutants that exhibit body shape variations, defining the morphological phenotype of previously unexamined mutants.
Keywords
Caenorhabditis elegans; dumpy; K-means clustering; long; small;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Qin, H., Rosenbaum, J.L., and Barr, M.M. (2001). An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons. Curr. Biol. 11, 457-461.   DOI
2 Sammeta, N., Hardin, D.L., and McClintock, T.S. (2010). Uncx regulates proliferation of neural progenitor cells and neuronal survival in the olfactory epithelium. Mol. Cell. Neurosci. 45, 398-407.   DOI
3 Savage-Dunn, C., Maduzia, L.L., Zimmerman, C.M., Roberts, A.F., Cohen, S., Tokarz, R., and Padgett, R.W. (2003). Genetic screen for small body size mutants in C. elegans reveals many TGFbeta pathway components. Genesis 35, 239-247.   DOI
4 Sewell, W., Sparrow, D.B., Smith, A.J., Gonzalez, D.M., Rappaport, E.F., Dunwoodie, S.L., and Kusumi, K. (2009). Cyclical expression of the Notch/Wnt regulator Nrarp requires modulation by Dll3 in somitogenesis. Dev. Biol. 329, 400-409.   DOI
5 Avery, L. and Shtonda, B.B. (2003). Food transport in the C. elegans pharynx. J. Exp. Biol. 206, 2441-2457.   DOI
6 Bar, D.Z., Charar, C., Dorfman, J., Yadid, T., Tafforeau, L., Lafontaine, D.L.J., and Gruenbaum, Y. (2016). Cell size and fat content of dietary-restricted Caenorhabditis elegans are regulated by ATX-2, an mTOR repressor. Proc. Natl. Acad. Sci. U. S. A. 113, E4620-E4629.   DOI
7 Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.   DOI
8 C. elegans Deletion Mutant Consortium. (2012). Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda) 2, 1415-1425.   DOI
9 Chung, K.W., Kim, J.S., and Lee, K.S. (2020). A database of Caenorhabditis elegans locomotion and body posture phenotypes for the peripheral neuropathy model. Mol. Cells 43, 880-888.   DOI
10 Dineen, A. and Gaudet, J. (2014). TGF-β signaling can act from multiple tissues to regulate C. elegans body size. BMC Dev. Biol. 14, 43.   DOI
11 Ferrier, A., Charron, A., Sadozai, Y., Switaj, L., Szutenbach, A., and Smith, P.A. (2011). Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 6, e26594.   DOI
12 Gumienny, T.L. and Savage-Dunn, C. (2013). TGF-β signaling in C. elegans. In WormBook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), https://doi.org/10.1895/wormbook.1.22.2
13 Tuck, S. (2014). The control of cell growth and body size in Caenorhabditis elegans. Exp. Cell Res. 321, 71-76.   DOI
14 Shephard, F., Adenle, A.A., Jacobson, L.A., and Szewczyk, N.J. (2011). Identification and functional clustering of genes regulating muscle protein degradation from amongst the known C. elegans muscle mutants. PLoS One 6, e24686.   DOI
15 Skuntz, S., Mankoo, B., Nguyen, M.T., Hustert, E., Nakayama, A., Tournier-Lasserve, E., Wright, C.V., Pachnis, V., Bharti, K., and Arnheiter, H. (2009). Lack of the mesodermal homeodomain protein MEOX1 disrupts sclerotome polarity and leads to a remodeling of the cranio-cervical joints of the axial skeleton. Dev. Biol. 332, 383-395.   DOI
16 Thein, M.C., McCormack, G., Winter, A.D., Johnstone, I.L., Shoemaker, C.B., and Page, A.P. (2003). Caenorhabditis elegans exoskeleton collagen COL-19: an adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Dev. Dyn. 226, 523-539.   DOI
17 Johnstone, I.L., Shafi, Y., and Barry, J.D. (1992). Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7. EMBO J. 11, 3857-3863.   DOI
18 Uppaluri, S., Weber, S.C., and Brangwynne, C.P. (2016). Hierarchical size scaling during multicellular growth and development. Cell Rep. 17, 345-352.   DOI
19 Yemini, E., Jucikas, T., Grundy, L.J., Brown, A.E.X., and Schafer, W.R. (2013). A database of Caenorhabditis elegans behavioral phenotypes. Nat. Methods 10, 877-879.   DOI
20 Harada, S., Hashizume, T., Nemoto, K., Shao, Z., Higashitani, N., Etheridge, T., Szewczyk, N.J., Fukui, K., Higashibata, A., and Higashitani, A. (2016). Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling. NPJ Microgravity 2, 16006.   DOI
21 Kuhara, A., Inada, H., Katsura, I., and Mori, I. (2002). Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6. Neuron 33, 751-763.   DOI
22 Lee, S.K., Li, W., Ryu, S.E., Rhim, T., and Ahnn, J. (2010). Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? Biochim. Biophys. Acta 1797, 1687-1695.   DOI
23 Levine, E. and Lee, K.S. (2020). Microfluidic approaches for Caenorhabditis elegans research. Anim. Cells Syst. (Seoul) 24, 311-320.   DOI
24 Li, W., Bell, H.W., Ahnn, J., and Lee, S.K. (2015). Regulator of calcineurin (RCAN-1) regulates thermotaxis behavior in Caenorhabditis elegans. J. Mol. Biol. 427, 3457-3468.   DOI
25 Lloyd, S. (1982). Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129-137.   DOI
26 Morck, C. and Pilon, M. (2006). C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6, 39.   DOI
27 Nagashima, T., Ishiura, S., and Suo, S. (2017). Regulation of body size in Caenorhabditis elegans: effects of environmental factors and the nervous system. Int. J. Dev. Biol. 61, 367-374.   DOI
28 Page, A.P. and Johnstone, I.L. (2007). The cuticle. In Wormbook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), https://doi.org/10.1895/wormbook.1.138.1