• 제목/요약/키워드: Built­Up beam

검색결과 77건 처리시간 0.025초

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams

  • Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes;Redha, Yeghnem
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.435-454
    • /
    • 2011
  • Bonding composite materials to structural members for strengthening purpose has received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs. In this paper, a numerical solution using finite - difference method is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends with different thinning profiles. These latter, can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.

Experimental study on the behavior of reinforced concrete beam boosted by a post-tensioned concrete layer

  • Mirzaee, Alireza;Torabi, Ashkan;Totonchi, Arash
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.549-557
    • /
    • 2021
  • Nowadays, strengthening of buildings is an inclusive and effective field in civil engineering that is not only applicable to the buildings but also it can be developed for the bridges. Rehabilitation and strengthening of structures are highly recommended for the existing structures due to the alter in codes and provisions as well as buildings' use change. Extensive surveys have been conducted in this field in the world that propose wide variety of methods for strengthening of structures. In recent years, more specific researches have been carried out that present novel materials for rehabilitation beside proposing methods and performing techniques. In the current study, a novel technique for developing the bending capacity of reinforced concrete beams to enhance their performance as well as rehabilitating and reforming the performance of reinforced concrete beams with nonstandard lap splices, has been proposed. In this method, a post-tensioned concrete layer is added to the side face of the concrete beams built in 1:1 scale. Results reveals that addition of the post-tensioned layer enhances the beams' performance and covers their weaknesses. In this method, 18 reinforced concrete beams were prepared for the bending test which were subjected to the four-point pushover test after they were reinforced. The testing process ended when the samples reached complete failure status. Results show that the performance and flexural capacity of reinforced beams without lap splice is improved 22.7% compared to the samples without the post-tensioned layer, while it is enhanced up to at least 80% compared to the reinforced beams with nonstandard lap splice. Furthermore, the location of plastic hinges formation was transformed from the beam's mid-span to the 1/3 of span's end and the beam's cracking pattern was significantly improved.

철도교량의 하로 PSC U거더교 설계적용사례 (The Design Of PSC U-Girder (Song-Lim Gyo) In Korean Railway)

  • 조선규;권순섭;김선곤;이종신;이종민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.545-551
    • /
    • 2006
  • Along with the steady development of Korean Railway construction technology, Contemporary society needs more modernized structures which can meet not only structural value but also aesthetic and environmental value. To follow this demand of society, Pre-Stressed Concrete U-girder bridge(Somg-Lim Gyo, L=330m) is introduced in 'JINJOO-KWANGYANG RAILWAY CONSTRUCTION PROJECT'. On the environmental point of view, the huge noise due to the operation of train can be reduced remarkably by the side beam of U-girder which is high enough to substitute soundproofing wall. Moreover, by aesthetic variation of the shape of outer beams and coping of piers, the exterior view of the bridge can be improved and in accordance with surroundings. Pre-Stressed Concrete U-Girders which are built up above the outer sides of slab deck make easier to secure the clearance of a bridge and make it possible to lower the distance of centroid between superstructure and railroad tracks.

  • PDF

광조형법에 있어서 조형정도향상을 위한 연구 (The Study on Improvement of Shape Accuracy in Stereolithography)

  • 김준안;백인환
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.15-21
    • /
    • 1997
  • In the stereolithography process, the accuracy of cured shape depends on laser power, scanning speed, scanning pattern, resin characteristics etc. When three-dimensional objects are built, higher laser power gives higher building efficiency. Normally we could control scanning speed and scanning pattern, which affect curing thickness and generate volume of curl in & after building. Olgomer, Monomer and Initiator are major components. Kinds and volume of them decide characteristic of resin. In this paper, we deal with major facts and their characteristics for precision shape building.

  • PDF

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

선체고유횡진동해석(船體固有橫振動解析)에 있어서의 계산정도(計算精度) (On the Accuracy of Calculation in the Analysis of Natural Transverse Vibrations of a Ship's Hull)

  • 김극천;이호섭
    • 대한조선학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 1976
  • Using the computer programs for calculation of natural vibrations of ship's hull developed by the authors et al., an investigation into influences of various parameters on the accuracy of calculation was done through example calculations of a 30,000 DWT petroleum products carrier M/S Sweet Brier built by Korea Shipbuilding and Engineering Corporation. The methodical principles employed for the computer program development are as follows; (a) the ship system is reduced to an equivalent discrete elements system conforming to Myklestad-Prohl model, (b) the problem formulation is of transfer matrix method, and (c) to obtain solutions an extended $G\ddot{u}mbel's$ initial value method is introduced. The scope of the investigation is influences of number of discrete elements, choice of significant system parameters such as rotary inertia, bending stiffness and shear stiffness, and simplification of distributions of added mass and stiffness as trapezoidal ones referred to those of midship section on the calculation accuracy. From the investigation the followings are found out; (1) To obtain good results for the modes up to the seven-noded thirty or more divisions of the hull is desirable. For fundamental mode fifteen divisions may give fairly good results. (2) The influence of rotary inertia is negligibly small at least for the modes up to the 5- or 6- noded. (3) In the case of assuming either bending modes or shear modes the calculation results in considerably higher frequencies as compared with those based on Timoshenko beam theory. However, the calculation base on the slender beam theory surprisingly gives frequencies within 10% error for fundamental modes. (4) It is proved that to simplify distributions of added mass and stiffness as trapezoidal ones referred to those of midship section is a promising approach for the prediction of natural frequencies at preliminary design stage; provided good accumulation of data from similar type ships, we may expect to obtain natural frequencies within 5% error.

  • PDF

개량수평스티프너를 보강한 고강도강(HSA800) 접합부 내진성능평가 (Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener)

  • 오상훈;박해용
    • 한국강구조학회 논문집
    • /
    • 제26권4호
    • /
    • pp.361-373
    • /
    • 2014
  • 건설시장이 보다 고층화 장스팬화되어감에 따라 건설재료 또한 고성능화되어가고 있다. 이러한 추세에 따라 국내에서도 건축용 인장강도 800MPa급 강이 개발되었다. 현재 고강도강을 대상으로 한 휨재, 압축재, 접합부의 적용실험이 지속적으로 이루어지고 있으나 아직까지 고강도강 적용에 대한 설계지침이 마련되어 있지 않은 실정이다. 이 중 고강도강 기둥-보 접합부의 경우 고강도강의 특성이라고 할 수 있는 높은 항복비에 의해 연성접합부 구현에 대한 평가가 비관적이며 연구자료 또한 미비하다. 따라서 본 연구에서는 고강도강 기둥-보 접합부의 변형능력 향상을 위하여 접합상세를 변수로 하고 연성접합부 구현을 위한 연구를 수행하였다. 접합상세로는 논스캘럽 공법과 개량 수평스티프너 공법을 적용하였다. 적용한 접합상세를 가지는 접합부 모델들을 대상으로 실물대 반복재하실험과 비선형 유한요소해석을 실시하였다. 연구결과, 제시한 접합상세를 가지는 고강도강 기둥-보 접합부의 구조성능은 KBC기준의 특수모멘트골조의 요구성능을 만족하는 것으로 나타났다.

생산 라인에서의 광 Pick-up용 비구면 대물 렌즈 측정을 위한 안정된 층밀리기 간섭계 (Stable lateral-shearing interferometer for in-line inspection of aspheric pick-up lenses)

  • 조우종;김병창;김승우
    • 한국광학회지
    • /
    • 제8권3호
    • /
    • pp.189-193
    • /
    • 1997
  • 광 pick-up용 비구면 대물 렌즈는 컴퓨터와 멀티미디어 기기 등의 발달로 수요가 급증하고 있으며 사출성형에 의하여 대량 생산되고 있다. 광 pick-up용 비구면 대물 렌즈의 생산성 향상을 위해서는 생산공정중의 전수검사를 요구하며 이는 측정환경에 강인한 측정기를 필요로 하고 있다. 본 연구에서는 생산공정중에 광 pick-up용 비구면 대물 렌즈를 측정할 수 있는 개선된 층밀리기 간섭계를 제안하고자 한다. 본 층밀리기 간섭계는 3개의 직각 프리즘과 1개의 광분할 코팅된 프리즘으로 구성되며 index matching oil에 의하여 상대이동이 가능하도록 조합되어 있다. 간섭무늬를 정확히 분석하기 위한 위상천이와 층밀림량의 조절은 프리즘 간의 상대 이동에 의하여 가능하며 이를 위한 구동 기구부를 제작하였다. 또한, 본 연구에서는 반복연산에 의한 일반 알고리즘을 도입하여 위상천이 시에 발생하는 index matching oil의 유막 두께변화에 의한 기준위상 오차를 보상하였다. 광 pick-up용 비구면 대물 렌즈의 수차량을 정량적으로 산출하기 위하여 Zernike 다항식 맞춤을 수행하였다. 본 간섭계는 측정환경에 매우 강인하며 방진과 밀폐가 없는 열악한 측정환경하에서 반복측정을 수행하였을 때 .lambda./100 이하의 반복능을 얻었다.

  • PDF

커버플레이트의 온도변형을 이용한 강구조물의 다단계 프리스트레싱 (Multi-Stepwise Prestressing Method of Steel Structure Using Thermal-Expanded Cover-plate)

  • 김상효;안진희;김준환;김형주
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.783-792
    • /
    • 2006
  • 본 연구는 압연형강이나 조립형강과 같은 강구조물의 지간증가나 하중 증가로 큰 휨강성이 필요한 경우 상부플랜지나 하부플랜지에 부착하여 구조물의 하중저항성능을 향상시켜주는 커버플레이트의 온도변형을 이용한 프리스트레싱 도입 방법의 개발에 관한 것으로 다단계 온도변형이 도입된 커버플레이트를 프리스트레싱 도입을 위한 구조물에 강결한 후 커버플레이트의 수축으로 발생하는 다단계 수축력을 프리스트레싱력으로 이용하는 방법이다. 본 연구에서는 온도변형에 의하여 구조물에 도입되는 프리스트레싱력의 이론적 연구와 다단계 온도변형을 이용한 다단계 프리스트레싱 기법의 도입을 위하여 커버플레이트의 다단계 온도분포에 대한 열전달 이론해의 제시와 H형강을 대상으로 다단계 온도변형에 의한 다단계 프리스트레스 도입 효과를 분석하였다.

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams under thermal load

  • El Mahi, Benaoumeur;Kouider Halim, Benrahou;Sofiane, Amziane;Khalil, Belakhdar;Abdelouahed, Tounsi;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • 제17권5호
    • /
    • pp.601-621
    • /
    • 2014
  • Repairing and strengthening structural members by bonding composite materials have received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs under various types of loading. In this paper, a numerical solution using finite - difference method (FDM) is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends under thermal loading. Different thinning profiles are investigated since the later can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. The shear correction factor for I-section beams is also included in the solution. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.